

s A Plane (Morgan Pehnel & Constants) (Constants) (Co

THE COLLEGE 2 P 12 **STUDENT LIFE** - 3 to 1 10 10 nnj ADMISSION **CHARGES AND FEES** 1 2 n , n , n . , 🖕 t 🙀 🖣 🌆 **ACADEMIC POLICIES &** REGULATIONS ??h 🥄

n 12 nn 12 12 **EDUCATIONAL PROGRAMS** 27 6 t 3 3 5 5 AR 5 1 5 1 n n AWARDS, HONOR SOCIETIES ACADEMIC DEPARTMENTS/ **PROGRAMS** n t_wne testen **ب**ع 12, 12, hen he = here 1 123 n the Man nn han the transformer to the state ??•••j ARA AR SILAR

٩ 2 se n N M t_s, t 🐙 •••-•••• t 22 M to the sta -n 12- 3 6 12 - to 32 -n -n -TN[®] * 💔 - 🙀 t 🔍 snn . DIRECTORIES, CALENDAR, MAPS n sn starr , ta 2 12 23 3 12 M n ta na s • K

```
1 25 3 39 2 n 12 12 10 10 12 10 6 to 32 m
3 24 • j•3= 3••••3, 2 nn • • 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3, • 2 3
     • • n • .(2 ) 2 4 000
       - 1212n - 100 - 12 - 12 - 12
          , n
•• 111 - 12 • • • • 112 • • • • • • • • •
    333 • j• 3* 3• • 3
• • 2 te ,• 1 12 -0333
 11 - 239 - 399 3.
M
            2003 A
 • n • . (202) 2-4
```

nt $t_{\rm m}$ $t_{\rm m}$ t

A liations

 $\begin{array}{c} \mathbf{x} \\ \mathbf{$

THE MORAVIAN CAMPUS

n 3. 4. 1.3 n - esten 18 n - 18 n - 18

n s h n -1 h h h -1 h h -1-2 2 2 h -1 h **Services Provided**

ne tos a tweeter Na haat han to is in ha Land Marken Mark Pare Tel 2 ann ne 312 mare that ne nei 2ne 32 n h in 2 2 22 30 3 n 1 0 (- 14 16), 2 j ...

Services And Accomodations

Disclosure Process:

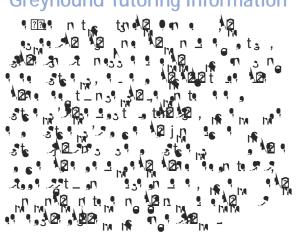
Documentation Guidelines

n $2_{\rm M}$ n = 1.12 $3_{\rm M}$ $2_{\rm M}$ 2

Disability Documentation Guidelines

- sing t 32 14 18 14 18 18 $\begin{array}{c} \text{nens} \text{if } t \text{ ness}, \text{ segment} \text{if } t \text{ segment} \text{if } t$ "n 🗛

 $\begin{array}{c} n \\ t_{N} \\ t_{$ ct3 ()ne 1912, 12 1 1 t_{3} , t_{1} , t_{1} , t_{1} , t_{2} , t_{1} , t_{2} , t_{1} , t_{2} , t🚽 t 🎝 🔊


n Reterrent northernorthe $\frac{1}{2}$ $\begin{array}{c} \mathbf{M} = \left\{ \begin{array}{c} \mathbf{M} \\ \mathbf$

n 12 n 12 to 12 12 12 12 n 12 n 12 to 12 12 to 12 12 to 12 snn la la n la: $\begin{array}{c} \mathbf{n} \quad \mathbf{$ n 312 m = t nes 12 -2 • • • • • • • • • • •

Service and Emotional Support Animal Policy

- ntos n n n •
- the time of the .‰!- n t≯

Greyhound Tutoring Information

Who are Greyhound Tutors?

 $\begin{array}{c} \blacksquare & n \\ \blacksquare & n \\$ an N 1 M

nt in the start in nn 2 gren trake is set to as ⊰stel_{ine} ne N2_{in}e t

Overview of Tutoring:

tnes ntt_{in}es ntes n s 2 n s s 2 n test Na s 1 n test

 $12 \text{ stress}_{\text{M}}$ = n than t n t in t 2 m 2 n ten tes stress 2 n s n m 2 n ten tes stress 2 n s n m n stress n esst 2 2 n 2 m n tes n tes stress 2 n tes n ⊥r . Masin strAQ!

λ2°°, e₃ °, E⊡? nt_{re} tank2, en e Pt 22, N2°, ne 3°, th22, . Na Na ne 3°, th22, . Alert A

Making an Appointment or Viewing a **Drop-in Schedule**

nt_{in} tnAR on o MR nas

s in n_os i ۹.

nn n n n n n 1 - 2 n t n te gan te te n 2 - 2 n t - n t n 2 - 1 - 2 n t 31. n t # 200 \$ % t2, # 2000 1

ntentes f (f) ی و n te 🗷 n t 🖉 یو. ntnte Agen je na sej taka tster j, Azsensi j nt en Azne sej Mesensi na Azne sej Mesensi na Azne sej Benefits of being a Tutor: 🧈 💶 s tn 🛛 , n t 🛝 n ji n 20 200 m 1-18 no 19 36 1 n la nt la sar sn - sn t, m t.9.9.9.9 12 n ten 149 - 29.2 nt 3 ns 1 R R R n 3 n senten $t_{1} \ge 3 \ge 1$ $1 \ge 3 \ge 1 \ge 3 \ge 1$ $1 \ge 3 \ge 1 \ge 3 \ge 1$ $1 \ge 3 \ge 1 \ge 1 \ge 1 \ge 1$ $1 \ge 3 \ge 1 \ge 1 \ge 1 \ge 1$ $1 \ge 3 \ge 1 \ge 1 \ge 1 \ge 1$ $1 \ge 3 \ge 1 \ge 1 \ge 1 \ge 1$ $1 \ge 3 \ge 1 \ge 1 \ge 1 \ge 1$ $1 \ge 3 \ge 1 \ge 1 \ge 1 \ge 1$ $1 \ge 3 \ge 1 \ge 1 \ge 1 \ge 1$ $1 \ge 3 \ge 1 \ge 1 \ge 1 \ge 1$ $1 \ge 3 \ge 1 \ge 1 \ge 1 \ge 1$ $1 \ge 3 \ge 1 \ge 1 \ge 1 \ge 1$ $1 \ge 3 \ge 1 \ge 1 \ge 1 \ge 1$ $1 \ge 3 \ge 1 \ge 1 \ge 1 \ge 1$ $1 \ge 3 \ge 1 \ge 1 \ge 1 \ge 1$ $1 \ge 3 \ge 1 \ge 1 \ge 1$ $1 \ge 3 \ge 1 \ge 1 \ge 1$ $1 \ge 1 \ge 1 \ge 1 \ge 1$ $1 \ge 1$ **Position Requirements:** All Marian in Stan (2n at. All Stan (2n a inter (2nt 12 m star 6 maria 2 all all all and no ne snt 1 - All an aj 200) 🤋 t 🤉 / Mic in the in the sent 12 no the . t t.32 1 n 3.00 2 m M - 4 1996 - 22 m 1 - ns 19 - 2309196 J - In In M - to s in R ARM . . .

Greyhound Tutor Responsibilities:

s s la la stala a stala stal 3 31 12, 11 11 11 11 11 " WE " N" , IS , N . S . . . hŵ – states in state in state ester n not e stern? AB 36 9 39 to 29 3 14 · wing - stern han tes . n 131 n 1 211 n 13 21 1 9 . 7 22 m

Tutor Application Process:

1 sterne ts marks to the ts marks to the total sterne to the sterne to t

Date of Withdraw	Tuition Incurred	Tuition Refunded
1st Week (Drop/Add)	0%	100%
2nd Week	30%	0%
3rd Week	0%	0%
4th Week	0%	30%
After 4th Week	100%	0%

n tin M² 2 st 2 st M² s s 2 st M² As t 2 st M² s s 1 s n / c , n n n n s s n t s s t - 32 st M² n - n t - 32 s st n 2 n 2 n 2 n n t s s s n / c s 2 s n n 2 n 2 n 2 s n n 2 n 2 n 2 s n n 2 n 2 n 2 s n n 2 n 2 n 2 s n n 2 n 2 n 1 s n 2 n 2 n 1 s n 2 n 2 n 1 s n 1 2 n 1 s n 2 n 2 n 1 s n 1 2 n 1 s n 2 n 2 n 1 s n 1 2 n 1 n 1

k. in nets clee ntes, ne ma set stars. n term n = 1 sin Un term n = 1n term n = 1 in _a to t, et statest, et • 6 t 3 2 1 3 1 = 1 + t 3 3 - 1 + 1 1 2 n te 2 n n n, st n n 14.4n t t_{M} 14.4n t t_{M} 14.4n t t_{M}

Credit Hour Policy

ne $\mathbb{A}_{\mathbb{N}}$ n \mathbb{A} on $\mathbb{A}_{\mathbb{N}}$ of $\mathbb{A}_{\mathbb{N}}$ of $\mathbb{A}_{\mathbb{N}}$ of $\mathbb{A}_{\mathbb{N}}$ is a set of $\mathbb{A}_{\mathbb{N}}$ of \mathbb

• •n 🌆

n \mathbb{Z}_{h} n \mathbb{Z}_{h} $\mathbb{Z}_$

100 sta

- , -

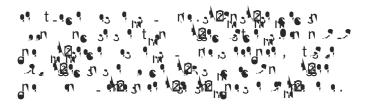
124 124

3. (n t $-t_{W}$ n n start $-t_{W}$ n n start $-t_{W}$ n n start $-t_{W}$ n n start $-t_{W}$ $-t_{W}$

• t, 32 • \@ +n 🗚 🕹 s 🕻 🖉 🖍 $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\$ 12 h. <u>م</u> 10 IN 9 IN = 12 IN 9 IN = 3 5 12 -Ph , • **A**BAB_{IN}, . . AB AB = 3 6 AB ...

No sault degree-completion students only) •3 t 2 N S & SAR n tores Alling n tsee 20, . . N 3 3 3 3 12 . 1 . ne99 m m t 9.2 m 129 ste9.2 ••• , . . N t 🞾 t 🞾 , nn 2, 3, j , 2, 2, 1 t 2 (, , ,) t 23, nn - t 23 18 6 12 19 on 8 18 t 2, t 2 h n n h 2 st , j 2 st 12 2 2 n 9 tn 201 $M = ten \mathcal{A} \mathcal{A}_{1} + \frac{1}{2} +$ * 129 • ten stans * _t • • ™ten stans n ten stans M te 🧏

• 10 0 • 🖓 🖍 , . . 🍨 🧏 . ng 🗧 . 12:0 n (nn 10 32), . . Ellin n (nn 10 32), . . •n 🐙 🛓 🖊 🙀 🎙 🥕 n n 9 🤧 nn 🦏 . . • t 🖉 • 3 •t 🖉 • 3, . n• 4. $\begin{array}{c} \mathbf{x} \\ \mathbf$ ⊰n,∰2n & _m•n nn ⊰n, M⊇n , n n 12 39 j 291 12 22. 22 _W 3 an j 2n 1 = n , 2 1 391 •••n• ** ** 312 n** Allied Health Programs with Je erson University ne la n 1 1 2 n e A 3te $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$. 12. "nn - 313%, nn


Minors

ARIAR ARIAR STAR. 100 . April 10 12 12 - 13 ABA 9 16 IN - m 10 m 1 m = 5 to 12 -- 3 12 -- 13 1 1 3 12 1 3 5 12 -- 1 the state , nn 🕴 🧶 🤧 n n . . . Self-Design Majors or Minors

siter we we have the the second states and the second states and the states and t

INTERDEPARTMENTAL MAJORS

 $\begin{array}{c} \mathsf{M} = \left\{ \begin{array}{c} \mathsf{M} \\ \mathsf$

SELF-DESIGNED MAJORS

A student whose academic interests or career goals cannot be met by any of the departmental or interdepartmental majors listed above may propose a self-designed major. Such a program normally consists of 12 course units. The student chooses a title for the major and formulates a general rationale for it (including specific career objectives, where appropriate). Each of the 12 course units must be justified as a part of the program and related to the rationale. At least one course among the 12 must be designated as writing-intensive, and at least two courses must be at the 300-level. The student's faculty advisor works closely and carefully with the student in planning such a self-designed major. The student should be prepared to demonstrate that his or her goals cannot be met through existing options. As for the regular interdepartmental major, the Academic Standards Committee may meet with the student to discuss the program. Applications must be submitted for approval to the Academic Standards Committee no later than the announced date of midterm of the first term of the junior year.

Double Majors

A student who wishes to complete full majors in two areas of study indicates one as the primary major, which determines the degree (B.A., B.Mus., or B.S.). Both majors will be noted on the transcript. Courses in each major must be independent of each other; students may not "double dip" one course between two majors, or between any major and a minor.

Double Degrees (Undergraduate)

Students who wish to earn multiple baccalaureate degrees from Moravian College must complete multiple majors (one major per degree awarded), all requirements of the Learning in Common program (excepting Add-Venture students), and at least eight additional course units beyond the first degree for each additional degree. For example, a student wishing to earn two undergraduate degrees must complete at least 40 units; a student wishing to earn three undergraduate degrees must complete at least 48 units.

Double Degrees (Graduate)

Students who have earned a graduate degree from Moravian College or Moravian Theological Seminary are invited to pursue a second graduate degree from the institution. Students must apply for admission to the new degree program, and fulfill all requirements of that degree program. The program director of the second degree will determine if credits from the previous degree may be applied to the new program; up to a maximum of 50% of those credits may apply the new degree program. Students who are simultaneously enrolled in two master's programs may count courses towards both degrees, as long as at least 50% of the courses in each degree program is completed independently of the other.

Some external accrediting bodies may have policies on transfer and sharing of credits between degree programs. Where these policies are more stringent or specific than the Moravian College policy stated above, the accreditation policies take precedence.

Students must complete the double degree within

n 312 n 2.00 2 n -12 n -12 20020 300-30), n₃ 12 -12 20020 300-30), n₃ 12 -132 -132n -12 12 -132 -132n -12 12 -132 -1322.00 2 -12 -

Degree Requirements for Transfer Students

LEARNING IN COMMON

 $\begin{array}{c} \mathbf{M} & \mathbf{$

 $\begin{array}{c} \mathbf{x} = \mathbf{x} + \mathbf$

Summary of Requirements for Learning in Common

n t_{H} M_{H} - s^{n} M_{H} $2s^{-1}$ + 2n ene 422 t_{H} M_{H} - s^{n} M_{H}), 1en te t_{H} $2s^{n}$ M_{H} , m^{-1}), 1en te n^{n} $2s^{n}$ M_{H} M_{H} , 1en te $2s^{n}$ M_{H} (- n^{n} n^{n} e^{n} e^{n} M_{H}), 1en te $2s^{n}$ M_{H} (- n^{n} n^{n} e^{n} e^{n} M_{H}), 1en te $2s^{n}$ M_{H} (- n^{n} n^{n} e^{n} e^{n} M_{H}), 1en te $2s^{n}$ M_{H} s^{n} t^{n} $2s^{n}$ M_{H} t^{n} t^{n} t

n te n te \mathbb{R} te $\mathbb{Z}_{\mathbb{N}}^{\mathbb{N}}$ \mathbb{R} st n s \mathbb{R} a s \mathbb{R} n \mathbb{R} te \mathbb{R} \mathbb{R} a n \mathbb{R} , in n \mathbb{R} n \mathbb{R} \mathbb{R} s \mathbb{R} n \mathbb{R} , in n \mathbb{R} n \mathbb{R} s \mathbb{R} n \mathbb{R} te \mathbb{R} n \mathbb{R} n \mathbb{R} \mathbb{R} n \mathbb{R} te \mathbb{R} n \mathbb{R} n \mathbb{R} \mathbb{R} n \mathbb{R} te \mathbb{R} n \mathbb{R} n \mathbb{R} \mathbb{R} n \mathbb{R} te \mathbb{R} n \mathbb{R} n \mathbb{R} n \mathbb{R} \mathbb{R} n \mathbb{R} te \mathbb{R} n $\mathbb{$

61319 Re 3 11 2932 Post 12 319 - M

 $\begin{array}{c} n & t & 2 \\ n & t & 3 \\ n & 1 \\ n$ te in an in tes she han a fin

 $\begin{array}{c} \mathbf{c} = \mathbf{c} & \mathbf$ n n 13 1 3t 1 3n to 7 9 20 the

INDEPENDENT STUDY & INTERNSHIP

Independent Study

A to R s to rest to rest to R s to r

hand stand for a second and the second and s

Internship

as je_m

ets enne Rane in men 232 te 200 Norm 20, 10 ets enne Rane music Norm 2, 10 ets enne Rane music Norm 2, 10 ets enne Rane music

n 22 n 22 n 22 n 22 n 22 n 23 n

te en ensterner etc enternete enter

 $r = \frac{1}{10}$ $r = \frac{1}{10}$ r =

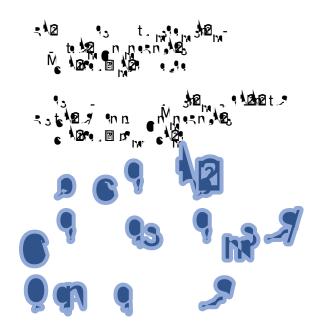
GRADUATE STUDY

369 m - w3 n Mat 36 M

 $\begin{array}{c} n & 2 \\ n & 2$

LAW

n $M_{e1} = \pi e^{1}M_{e1} + tM_{e1} = n ABe ne$ $M_{e1} = 3te 1_{10} + ste 1_{10} + n ABe ne$


ARAR S SR ARA • t t*s*t≠, t₃•22••j•42 $\mathsf{n}_{\mathsf{S}} + \mathfrak{s}_{\mathsf{S}} + \mathfrak{s}_{\mathsf{N}} \mathsf{n}_{\mathsf{O}} + \mathfrak{n}_{\mathsf{N}} + \mathfrak{s}_{\mathsf{N}} + \mathfrak{$ t 🐙 $\begin{array}{c} & & & & & \\ n & & & & \\ n & & n$, n_{in} e ⊠kstj n stein, n, 2, site in, nosin-192 - 12 no ts, sine i e 22 32 t2 no j22 no

• 13 • 12 •

HONORS SOCIETIES

6 1299 2 m et 11 99 11 11 11 11 11 . 3¹²™ ∎ⁿ™ a lan _{Mar M}ana t-Pan ne se se pa a lan e t_ se pa ABROL AR 13 Mg JR M READ JO N MORA AR ?? . . . 2

$$\frac{1}{2} \frac{1}{2} \frac{1$$

INTRODUCTION

n te st \mathbb{R} the neinest \mathbb{R} n \mathbb{R} since \mathbb{R} the neinest \mathbb{R} n \mathbb{R} since \mathbb{R} to \mathbb{R} since \mathbb{R} \mathbb{R} since \mathbb{R} is a since \mathbb{R} \mathbb{R} since \mathbb{R} is \mathbb{R} is \mathbb{R} \mathbb{R} is \mathbb{R} and \mathbb{R} since \mathbb{R} \mathbb{R} is \mathbb{R} and \mathbb{R} since \mathbb{R} \mathbb{R} is \mathbb{R} and \mathbb{R} since \mathbb{R} is \mathbb{R} \mathbb{R} is \mathbb{R} and \mathbb{R} since \mathbb{R} is \mathbb{R} is \mathbb{R} .

nterzee nt see zh n z

110-1	ne tone on te 73 ne _n 1 n _3te 1 n 2 1 an to 1919 ot 202 3 12 2 1 3 1 ne ne 1 2 2 - 3 19 2 2 3 3 1 ne ne 1 2 .
200-20	, 9 % nen te 7 ns 12 2 n s 9 ñe, ne 12 2 ns 12 2 s 9 ñe, ne 12 s 12 - e9 s je 12 s 12 n neine t 12 9 e.
210-2	2, 3°C 2, 3°C 1, 10, 10, 10, 10, 10, 10, 10, 10, 10,
300-30	, 1 2 10 n en te 2 n s n s 1 n en te 2 n s s 1 n e 1 n e 1 2 s s 1 n e 1 n e 1 2 s s 1 n e 1

The Major in Art

Rate 12 . n.n. . 114p • 113. 1 , 220, 22 , 2 3, 2 , 34 , 3 , 3 1, 22,24,22,23,2,34, 32,3, 2. t. 11. n t. t. 2.2 . n t. t. 2.2 t. 12. n n 113, 114, 11, 131, 142, 14, 2, 1, 1, 0,

•

s then s to s the s t

 $R_{\rm H}$ n n n n $R_{\rm H}$ $R_$

 $\begin{array}{c} 131. \\ n t_{1} \\ si2_{1} \\ n t_{2} \\ si2_{1} \\ s$

142. $121 - nt_{15} = 312_{14} - n - n$ $121 - 12 = 32 = 312_{14} - 20 = 320$

46

 $\begin{array}{c} \bullet \mathbf{2}_{s} n_{s} & t \underbrace{\mathbf{3}} \mathbf{2}_{0} \bullet \mathbf{2}_{0} & \bullet \mathbf{2}_{0} & \bullet \mathbf{2}_{0} \\ \bullet \mathbf{1}_{s} \bullet \mathbf{1}_{s} & \underbrace{\mathbf{3}} \mathbf{2}_{0} \bullet \mathbf{1}_{s} & \bullet \mathbf{1}_{s} & \bullet \mathbf{1}_{s} & \bullet \mathbf{1}_{s} \\ \bullet \mathbf{1}_{s} \bullet \mathbf{1}_{s} \bullet \mathbf{1}_{s} & \underbrace{\mathbf{3}} \mathbf{2}_{0} \bullet \mathbf{1}_{s} & \bullet \mathbf{1}_{s} & \bullet \mathbf{1}_{s} \\ \bullet \mathbf{1}_{s} \bullet \mathbf{1}_{s} \bullet \mathbf{1}_{s} \bullet \mathbf{1}_{s} & \underbrace{\mathbf{3}} \mathbf{2}_{0} \bullet \mathbf{1}_{s} & \bullet \mathbf{1}_{s} \\ \bullet \mathbf{1}_{s} \bullet \mathbf{1}_{s} \bullet \mathbf{1}_{s} \bullet \mathbf{1}_{s} \bullet \mathbf{1}_{s} & \underbrace{\mathbf{3}} \mathbf{2}_{0} \bullet \mathbf{1}_{s} \\ \bullet \mathbf{1}_{s} \bullet \mathbf{1}_{s} \bullet \mathbf{1}_{s} \bullet \mathbf{1}_{s} & \underbrace{\mathbf{3}} \mathbf{2}_{0} \bullet \mathbf{1}_{s} \bullet \mathbf{1}_{s} \\ \bullet \mathbf{1}_{s} \\ \bullet \mathbf{1}_{s} \bullet \mathbf{1$)

1 0. 🐅 🏼 🖓 🧈

 $\begin{array}{c} 1 & 0. \\ 2 & n & t \\ 2 & n & t \\ 3 & n & t \\ 3 & n & 1 \\ 1 & n & 1 \\ 2 & n & 1 \\ 1 & n & 1 \\ 2 & n & 1 \\ 1 & n & 1 \\ 1$

16 2 n in sisternis 3 , ten in sisterni in sister i siteri in sisteri in siste

 $\begin{array}{c} n & 2 & n \\ n & -n \\ n & -n \\ n & -n \\ n & 2 \\$

 $\begin{array}{c} 1 & 0.9 & 1242 & 1 \\ & 129 & 129 & 323 & 329 & 312 &$

230. n 3 - m t 2 - m n 3 - m n 3

231. t = 2 h = 2 h = 2 h = 2 h = 12 h = 12

 2 2. $\sin 3$ $\sin 1$ $2 \sin 4$ $2 \sin 3$ $\sin 1$ $\sin 2$ $2 \sin 4$ $2 \sin 3$ $\sin 1$ $\sin 2$ $3 \sin 2$ $3 \sin 2$ $\sin 3$ $3 \sin 2$ $2 \sin 3$ $3 \sin 2$ $2 \sin 3$ $3 \sin 2$ $3 \sin 3$ $3 \sin 3$ $3 \sin 3$

n n n n 222 n t 23 n n sin Matin n 222 n t 123 s 1 m n 232 n 232 n a to sin a AQ.

n. \mathbb{R} \mathbb{R}

 $3 \cdot \frac{3}{10} = \frac{3}{10} = \frac{2}{10} = \frac{2}{$

n i - n 2 sic in 2 nei n i - n 2 sic in 2 nei n i - 2 in n 2 nei n i - 2 ne n i - 2 nei n i

3 4.n $\ln 2$ $\ln 2$

- 400-401 n n .

ATHLETIC TRAINING

- the state of th

· 129 12n

 $\begin{array}{c} \mathbf{P} \\ \mathbf{$

- • • • ne 🖓 • n t. 1. 2331 12 10
- · ARAR ARE 1310 ARIC For we 1 on a AR -

EE = (n R) + (20%) + (30%) + (30%) + (30%) + (30%) + (30%) + (30%) + (30%) + (30%) + (10%) + (10%) + (10%) + (10%) + (20%) +n (10%) n (20%) n (

- 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -30, 201[°].

Accredation

Accreation n 2 n 2 2 to 12 2 2 n 3 2 n 3 2 2 1 2 n 3 2 1 2 2 1 2 n 3 2 1 2 2 1 2 n 3 2 1 2 2 1 2 n 3 2 1 2 2 1 2 n 3 2 1 2 2 1 2 n 3 2 1 2 1 2 n 3 3 2 1 2 1 2 n 3 3 3 1 2 n 3 3 1 2 n 3 3 3 1 2 n 3 3 3 1 2 n 3 3 1 2 n 3 3 3 1 2 n 3 3 3 1 2 n 3 3 3 1 2 n 3 3 1 2 n 3 3 3 1 2 n 3 1 2 n

BIOCHEMISTRY

n ann 🖌 🧛 n e 🎜 🗚 🕅 👖 🖉 🙀 🛛 e 🛎 🕬 e

12, 23, n, t, A, t, 32, 33, 312

 $\frac{12}{10} + \frac{12}{10} + \frac{12}{10} + \frac{1}{10} + \frac{1}{1$ _n• \2 s 12 12 m is 2 m in the 2 R 12 2 2 m is 2 m in the 2 m in the mater, n in 2 2 jin the m in the mater in the man me two is 2 the in mater in the in mater to 2 m in the international in the international international international international internation in the international internat

The Major in Biochemistry

• n•12 12, • 12, 12 • 14 - 14 - 1 - 1 - 1 - 1

BIOLOGICAL SCIENCES

 $\begin{array}{c} 1 & 2 & 0 & 1 & 2 & 0 \\ 1 & 1 & 2 & 1 & 2 & 0 \\ 2 & 1 & 1 & 2 & 0 & 0 \\ 2 & 1 & 2 & 0 & 0 & 0 \\ 2 & 1 & 0 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0 & 0 \\ 3 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0$

 $\frac{12n}{n} \frac{1}{n} \frac$

The Major in Biology

n = 2 n = 2 n = 2 n = 32 30112n = 11n = 330n = 30 12 () 12n 1,32 12:

210 \mathbb{R} , \mathbb{R}

230. 2_{0} ns h 1 = 12 n 1 = 12 1 = 10 2 0. 12 . 12(10° , nn 2 0) the 2 , nn 2 , nnn 2 , nnn 2 , nn 2 , nn 2 , nn 2 , nn 2 , nn

23. $tn A B_{M}$ sten Mitn Min Min the ABn Mitn Snn A 2 Min ABn Sn B A 2 Min ABn Sn B A 2 Min ABn Sn B A 2 Min AB A 2 Min ABn Sn B A 2 Min AB A 2 Min ABn Min A 2 Min AB A 2 Min AB A 1 Min AB Min A 2 Min A 2 Min AB A 1 Min AB Min A 2 Min A 2 Min AB A 1 Min AB Min A 2 Min A 2

310. The side of the state of

• 12 - nn 12 + t 14 + 3 no 439 42

3 . \mathbb{Z} $\mathbb{Z$

3034 12n 2 - 22n 2 - 22n2 - 22

3 .2. 3 .2. 2 .2. 3

101,202,

 $\begin{array}{c} \mathbf{A}_{\mathbf{R}} \mathbf{A}_{\mathbf{N}} \mathbf{A}_{\mathbf{n}}$

nt 2, n 1 2, n 2,

The Major in Chemistry

113, 114, 211, 222, 🙀 📢 💶 212 🖲 331.

The Interdepartmental Major

sting 2 and 3 and

COURSES IN CHEMISTRY

100. • AB 18 = n AB

• 12, non teste n an inden ind n 18 , n 19 t - 1 3 toster, etn t 20 t-312 m 3 1 12 n 3 3 9 2 3 - 7 3 t 19 3 113-114

• 20 . m • m • m - • 129 n 1. 12 nos 1 12 . . . 1 12 - no 1 27 2

211-212.

211-212. $n = \frac{12}{12}$ $n = \frac{12}{12}$ n

220.2. 13 ns 12

311. More than -12Market Market Market

313. 3 \mathbb{A} \mathbb{A} \mathbb

314. 121

32. 12. 12. (D 32) n, t A_{D} 31, A_{D} 12. (D 32) n, t A_{D} 32, A_{D} 12. A_{D} 12.

• N 331-332. 12 . 1 12.

333.

341.

60

₩2, • ₩29. . (**_** 3.2)

 $\frac{12}{12} + \frac{12}{12} + \frac{12$

1 0-1 ,2 0-2 ,3 0-3 1 1/2 n 1/2 ... 2,31-34. 2,3-3. 100.001 400-401 n n

CHINESE

COMPUTER SCIENCE

-19 , 5 9 3.2 - 1€ n t39+= 3.2 me9

DANCE

* ¶ 、 t 🞾

EARTH SCIENCE

ECONOMICS AND BUISNESS

on a not the trades on a the Appletice 1, the source of Bonen 22 1 18 18 201 18 21 18 21 18 6

•

The Major in Accounting

an tal an te 2 29 12 an .

The Minor in Accounting

the \mathbb{Z} on the \mathbb{Z} on \mathbb{W} \mathbb{Z} \mathbb{Z} () on test the \mathbb{Z} of \mathbb{W} \mathbb{Z} $\mathbb{Z$

The Major in International Management (French/German/ Spanish)

Notes for Majors and Minors in Economics and Business

ちったり いう~	n AR AR n e		
• 01 [°] /1	01, 4 n 🖡	13 12 , t, 312 13	- Lef
• 01/1	01,4(c.(^M ₃ n (0-1.2 c	7 3)
• 01/1	01, 4 🖾	13 2 , t, 32 , 3 M 3 n 0-1.2 M 3 n 0-1.2	აtt. "nt

to make the product of the product

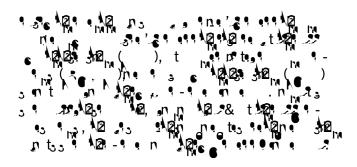
The Interdepartmental Major

The M.B.A. Program

 $\begin{array}{c} n & n \\ n & n \\$

 $\frac{10}{10} + \frac{10}{10} + \frac{1}{10} + \frac{1}{10$, ₀,n t A2 · ^{??} 2 - 5 49 (3) 22 00-1 9 1 1 5 2 on te 7 2 - t 2 2 1 - 1 2 - 1 · N 3 1 st - Man w - ma · <u>??</u> 4, 4, 4, n te 🤊 . · 17 23

The Master of Science in Human Resource Management (MSHRM)


Master of Science in Predictive Analytics (MSPA) Online

The Master of Health Administration (MHA)

the 2t t is in the 2t to 2, in the 2t to 2 is 2t to 2t

ちょたり_いみる j9 s e99 (3) 団 00-1 -9 1 1 2 3 2 m te オンス e9 よう 5 4 2 2 4 -9 3 5 m 1 2 5 5 4 2 m te オ nej.

The Five-Year Combined Degree Programs

Graduate Professional Certificate Programs

n te second sec

Undergraduate Courses in Accounting

21. \mathbb{R}^{2} an \mathbb{C}^{2} and \mathbb{C}^{2} a

2. n to n = 1n the n state n = 1n the n the n the state n = 1n the n the n the state n = 1n the n the n the n the state n = 1n the n the n the n the state n = 1n the n th

31 . • • • - m •

 $\begin{array}{c} \mathbf{P}_{\mathrm{M}} = \mathbf{P}_{\mathrm{$

324. $\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$

n = 10 ne 231 even transport

Μ

211. • • • • M • • • • • • ſ

n 1_{3} · 1_{2} · 1_{2} · 1_{2} · 1_{3} · $1_$ 1 24 m - • • • n 3 1 3 n • 1 3 . • M _

 $\begin{array}{c} & M \\ & n \\ & n \\ & n \\ & n \\ & t \\ & n \\ & s \\$

 $\begin{array}{c} \mathbf{n} \\ \mathbf{$

 $\frac{1}{10} \frac{1}{10} \frac$

22. • 12 n te • 10 - 10 - 22)

ne 3 tan snn , 5 2 μ ne 3 tan snn , 5 μ 2 μ n n n μ 2 μ n n n μ 3 μ 2 μ n n μ 2 μ 3 μ 3 μ 4 μ 5 μ 5 μ 5 μ 6 μ 6 μ 6 μ 7 μ 6 μ 7 μ 7 μ 7 μ 8 μ 9 μ

2. 🧏 n 👖 😘 🎝 ?? 2)

22 310. "n 2 20 n 3 n j. (17 3 310)

"n"j. (D 310) "n"2 nn "2 2 2 n , 5 2 n , 4 n tos, n t_n 22 , 2 , D 2 n , D 2 n , D 2

 $\begin{array}{c} \boxed{22} \\ \boxed{23} \\ \boxed{3} \\ \boxed{23} \\$

- $\begin{array}{c} \boxed{22} \\ \hline{22} \\ \hline{23} \hline \hline{23} \\ \hline{23} \hline \hline 23 \hline 23$

 • t 3 25 2 3 9 (• 5), t • (1 $\begin{array}{c} 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 1 \\ 1 & 2 \\$

n A_{2} nn J_{2} A_{3} A_{2} A_{3} A_{4} A_{5} A_{4} A_{5} A_{4} A_{5} A_{4} A_{4}

Admission to the Program

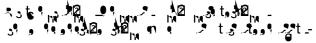
- 39 1. no 12 22 - 6 12 22 m -• , 3 • 1 1 • 1 3 ٩.

- - 2. 😰 .

2. 1

n

Assignment of Advisors

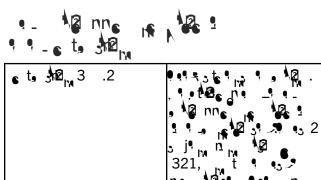

Image on the student has identified his or her primary major, a Declaration of Major form may be submitted to the registrar. Early childhood education certification candidates have two advisors. The primary advisor is a faculty member from the academic major; the secondary advisor is Jean DesJardin in the Education Department. Students will meet with their academic advisor as well as their Early Childhood advisor before registering for courses.
 Image Image

Middle-level certification candidates have two advisors. The primary advisor is Joseph M. Shosh of the Education Department. Students will meet with both advisors each semester before registering for courses.

312 16 t, n to 2 2 **% ა** ჩა 32, 129.0

PENNSYLVANIA DEPARTMENT OF EDUCATION (PDE) REQUIRED TESTING FOR TEACHER CERTIFICATION

The Pennsylvania Educator Certification Tests (PECT)



nn (3,2,3) (3,3,3) (

s t, 312 1x 222	
	4 22

Stage 3 Pre-Student-Teaching **Experience**

 $\begin{array}{c} 2 & 2 & n \\ 3 & 2 & 2 \\ 3 & 3 & 3 \\ 3 & 2 & 3 \\ 3 & 2 & 2 \\ 3 & 2 & 3 \\ 3 & 2 & 2 \\$

n 12
322, 3 2 2 n . 333, 2 ,
n 2 332, M
, s n , s , s , s , s , s , s , s , s ,

t -12 t	
t, 312 3 0	te 2 t.t hes to 32 A2 A 22 (110 n te 2)
st, 312 m 3 1	ten 21 ± m m .s. t. s. 2 m m m t (110 n te
st, 312 N 3 2	te 2 t t 3 t 3 2 2 2 3 - 3 2 - (110 n te .)

c t, 312 14 3 4	ten 21 ± _{hw} 3 te 32 kg 12 m 2 m 2 hw 9 (110 n te
s t, 312 _™ 3	te 2 t.t 3 to 12 2 n 2 1 10 n te .)

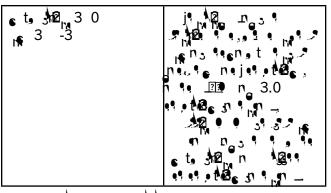
!3 €	t,	312
------	----	-----

€ t, 312 _{ha} 3	ten⊉t_t na na ta - 5n2 _h 22, • ₃ (1 0 n te)

t 🐙 🕻 t, 📲

s t, 312 _N 3	••• A2 t 22 sn A2 •• n te _>
s t, 312 ₁₁₄ 3	• • • • • • • • • • • • • • • • • • •

Stage 4 Student Teaching Experience


• • ▲ 2 _{| 1} • • ちょたり_いょっり 。 AR A23 り。 t _ AR AR り n_{2} , s_{1} , s_{2} , s_{1} , s_{2} , s_{1} , s_{2} , n_{2} , s_{2} , s_{1} , s_{2} , n_{2} , s_{2} , s_{1} , s_{2} , s_{1} , s_{2} , s_{2} , s_{1} , s_{2} , s_{1} , s_{2} , s_{1} , s_{2} , s_{1} , s_{2} , s١Ø

n te 🤊 🧷		12	
3 6 1 33	,	- t e •	

st, 312 ₁₁₄ 30	A = n = A = n = A = n = A = n = A = n = A =
st, 312 _{1M} 31	t, 312 12 142 142 142 142 142 142 142 142 14

€ t, 312 , 3,3	rste¶ _{nn} , ¶, , Å₽, .

t, 100.2	j¶ 🙀 🖓 ა ۹_ ۹۹ - 🧷 -
	j, 12, - , 40-n te
	10,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	"t _e nejet, Ma _e .
s t, 32 10, 222, 244	je ha ha -se n sse n 40-
222, _I 244	s •
	nte,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	t tang tang tang tang tang tang tang tan
	••••••••••••••••••••••••••••••••••••••
	2. 0
• t, 32 211, 214 2 21	
214.2, 🦹 21	3¶• n_3 ¶ ⊭ n n•¶ ¶•,40-n te⊱¶e
	A 1 819,9 2 9 10
	ne fe nejet, tele .
	••••••••••••••••••••••••••••••••••••••
€ t, 312, 323,	j, n n s, t-
324, 3 .2	
	, 120 1 1
	net i prese - nejerete ne _
	🔃 ng 2. 0, 🖓 🗖 🛍 😜
st, 312, 213.2, 21 .2, 321, 322,	ji na za na s
21 .2, 321, 322, I€ 3 .2	th2e • • , −n te
	• the ,• 1 • • • • • • • • • • • • • • • • •
	ne en jer til ,

1 0 2 10 2

Middle Level Education

1.59 <u>۱</u>2•, n 16 18:16 1 - nela s -٩3 ٩ **99** hw -**ب**•• , آ ა 🖣 ٩٩ _. 3219 22,312 **(n)** n • 🔊 • -٩ n **9**ئ hì 1313 n 1 1/2 n n, AL t 🦻 -⁻ . . $\begin{array}{c} 1 \\ -6 \\ t_{0} \\ -8 \\ t_$ n _{ha}. ٩ n_e ₹s **t** ! 1 N 3 9 99 **9 142** (2) ა 🎙 ₩2, ა -

€ t, 312 130 1€ 140.2	ji ka s
	929 _N 92 ¹ K ⁿ s- 196n9t9 _N 219 296 nejet9t866.
c t, 312 ₁₁₄ 131	je ha e see see see see see see see see see
st, 312 ₁₁₄ 244	j, 12 r. 3, t- 12 n, 12 r. 2. 0, t2 s, r. 2. 0, t2 s, r. 2. 0, t2 s, r. 10 r.
s t, 32, 333 s 3 .2	j, 2 , 2 n s t 2 , 2 n s t 12 , 12 , 12 , 14 , 15 , 16 , 16 , 16 , 16 , 16 , 16 , 16
€ t, 32, 232.2, 330, 331, 3 .2	$j = \frac{1}{100} = $
€ t, 312, 3 1 3 -3	ji \mathbb{R} \mathbb{L}_{3} \mathbb{L}_{3} \mathbb{R} \mathbb{R}^{n} \mathbb{R}^{n} $$

Secondary Education

-sternet and the second of the second star at a second star of the second star at the sec

••• sn 4 • 🛱 🙀 🖓 🙀 n te 🔊

.

130 - 3 to 1 m 1 m

213.2. 2 3 2 10 10 2 3 2 2 10 1 10 10 2 1 2 2 10 1 10 10 1 2 2 10 1 10 2 10 10 1 2 2 10 1 10 2 10 10 1 2 2 10 1 10 2 10 10 1 2 2 10 10 10 10 1 2 2 10 10 10 1 2 2 10 10 10 1 2 2 10 10 1 2 2 10 10 1 2 2 10 10 1 2 2 10 10 1 2 10 1 0 - 10 1

214.2 the n is n in the second s

244. M = M = 3 M = 3 M = 2 M = 32 m t = 2 M = 3 M = 3 M = 2 M = 32 m M = 2 M = 3 M = 2 M = 32 M = 3 M = 3 M = 3 M = 32 M = 3 M = 3 M = 32 M = 3 M = 3 M = 32 M = 3 M = 3 M = 32 M = 3 M = 3 M = 32 M = 3 M = 3 M = 32 M = 3 M = 3 M = 32 M = 3 M = 3 M = 32 M = 3 M = 3 M = 32 M = 3 M = 3 M = 32 M = 3

312 3 2 m m -22 m m -22 m

321. t • • 5 m

n h 2 in n in 32 n t 2 2 in 12 in 32 n t 2 2 in 12 in

h • • • <u>}</u>2_12

323. . - n 4 m3 to 312 m -- 3. 3. 12 - 1 - 12 12 - 12 12 - 12 12 $\begin{bmatrix} \mathbf{t} & \mathbf{t} \\ \mathbf{t} & \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} & \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} & \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} & \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \end{bmatrix} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{t$

324. . - n 4n 12= 1 122 8

330-2 n , 2 = 3 t 2 2 - 2 - 2 - 2 19.2 19 ten πn 3 h23n teπh23n h23n to 199 -π-h21 39 9 99 3 en t 199 32 -1 2 51 3 9

332. 3 32 32 32 32 32 332

 $\begin{array}{c} 3 & 0, 3 & 1, 3 & 2, 3 & 4, 3 \\ \hline & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$

3 th 2 t t M to 2 M as to 3 M M to 2 M as to 3 M M to 2 M as to 3 M M to 2 M as the 2 M as to 3 M M to 2 M as the 2 M as the 2 M M to 2 M as the 2 M as the 2 M M to 3 M as the 2 M as the 2 M M to 3 M as the 2 M as the 2 M M to 3 M as the 2 M as the 2 M M to 3 M as the 2 M as the 2 M M to 3 M as the 2 M as the 2 M M to 3 M as the 2 M as the 2 M M to 3 M as the 2 M as the 2 M M to 3 M as the 2 M as the 2 M M to 3 M as the 2 M as the 2 M M to 3 M as the 2 M as the 2 M M to 3 M as the 2 M as the 2 M as the 2 M M to 3 M as the 2 M as the 2 M as the 2 MM to 3 M as the 2 M as t

3 . 2 t 2 nn 2 t 2 nn 2 t 2 nn 3 2 t 2 nn 3 2 nn 3 2 nn 3 2 nn 3 2 nn 1 2 nn 2 n

3 0. 12 n 2 nn t n = n n = n2 n t 2 n = n 2t 2 n = n 2n = 3 1. 21 \mathbb{Z}_{n} \mathbb

1 0-1 , 2 0-2 , 3 0-2 , 3 1-3 4. 2 , 3 -3 . 400-401 n n · · Honors are normally taken fall and spring of the senior year. Because teacher certification students fulfill their full-time student-teaching requirement one semester of the senior year, they will need to complete their Honors work during the spring of the junior year and one semester of the senior year. Students interested in Honors need to plan for this early in their junior year.

Graduate Courses in Education

00 9 9 , 99 2 w ta h stand in the second sec t, t, NR (999 996 B 9 9 9 9 2 9 2 9 9 9 0 Allon to Allone to ? ۩_1 ال ال n te 2 129 • <u>12 1</u>2 AB. n n ₽. .n I..3 n 13 Nc _ivi™n __र -

 12 m t
 13 m t
 13 m t
 13 m t
 13 m t
 10 m t</t

01 9 'n 3 t, 32 !st**¦∖⊉2**_2† 13 -3 ts 20 13 nn nn n jn t⊅ 3 ¶ 90 N22 (<u>en</u>) h • 3 n t °i**€** \2 محمد الوام الم_{لل} المحمد الحمد ¢n2t ♪ N2 . n . n • 32 🔓 🥂 ٩٩)

R n s

10 2 \mathbb{N} 2 \mathbb{N} \mathbb{N} \mathbb

24 to 32 and 32 and 2 to and 32 and 12 to and 32 and to and 32 and 32 and 32 and 12 and and 32 and 32 and 13 to and 32 and 32 and 32 and 14 and and 32 and 32 and 15 and and 32 and 32 and 16 and and 32 and 32 and 17 and and 32 and 32 and 18 and and 33 and 33 and 19 and and 33 and 33 and 19 and and 33 and 33 and 10 and and 33 and 10 and and 33 and

 12 n s R_{j} R_{i} R_{i}

 $\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & &$

6

_?**!** ,\2\2; $= \frac{1}{100} \frac{$

ne ht tel \mathbb{R} tel \mathbb{R}

₩2., 27.27. ₁₂ & ± 312₁₁₁

states a transfer to the states and the states and the states at the states and the states at the st

 $\begin{array}{c} 03 \text{ sterm} \\ 10 \text{ m} \text{ sterm} \\ 10 \text{$

 14.2 the n in () 2 n term $n_{\rm M}$ is n in () 2 n term $n_{\rm M}$ is n in () 2 n term $n_{\rm M}$ is n in () 2 n 2 is in n term $n_{\rm M}$ is n in () 2 n 2 is in n term $n_{\rm M}$ is n in () 2 n 2 is in n 2 is in () 2 2 is

 $\begin{array}{c}1.2 \text{ n} \\3 \text{ s} \\1 \text{$

n nt_M Man 21.2

 $21 t \cdot 3 n \cdot 3 n \cdot 10^{10} t \cdot 10^{10} t$

21 m t 32 m 32 m

30.2 n t₃ , nn - 3nn ()

 $\begin{array}{c} t & \mathbf{2} & \mathbf{n} & \mathbf{2} \\ \mathbf{M}^{2} & \mathbf{n} & \mathbf{2} \\ \mathbf{n} & \mathbf{n} & \mathbf{n} \\ \mathbf$

- **ENGINEERING**
- AR 9 AR (nn 90 32 € t € 9 099) h. ▲ \@r•_____ **\@**____
 - N2 jA2,2 j n• N2_Ms₀ t

3/2 Undergraduate Program

nn 90 312 12 A2 3 M M20 12 3 3 n t-12, 1237 the no 12 n 10 3 9 n t 12 nn 90 312 6 t 69 999 M 299 A2 n 0 2

He to he - IN ARTAR n , n 1. SAR - NA PAR

Major Requirements

n te 20 on te 2 (• 20 113-114 2 2111-112), _{is n} te e _{is} e n te 2

sen man Bern nes in Maine-

Notes on the Major in English

 $\begin{array}{c} n & 2 \\ n & 3 \\ n & 3 \\ n & 2 \\ n & 3 \\ n & 3 \\ n & 3 \\ n & 1 \\ n & 1$

The Minor in English

22, 22 211, 212n 21 Ke ns in te No. 3 2 No. 22 No. 20 No.

The Interdepartmental Major

 $M_{2} = \frac{1}{12} + \frac$

English Major with Writing Arts Certification

· Nº 19 N - 12 9 19 - 1 + 123

. 12 . . .

en et al a service de la servi

. 22 3 1 . • **12 . • 1**

* noto s \mathcal{A} of \mathcal{A}

Teacher Certification in English

 $\mathcal{A}_{\mathcal{A}} = \mathcal{A}_{\mathcal{A}} =$

Courses in English

N \mathbb{A} \mathbb{A}

 $\frac{1}{10} \frac{1}{10} - \frac{1}{10} \frac{1}{10} - \frac{1}{10} \frac{1}{1$ nee, nee , ?? N 📴 210.2. t 🙀 🧈 🎝 $\begin{array}{c} M \\ H^{n} \mathbf{n} \mathbf{c} \ \mathbf{t}_{3} \mathbf{n}^{2} \mathbf{n}_{1} \mathbf{n}_{1} \mathbf{n}_{2} \mathbf{n}_{1} \mathbf{n}_{2} \mathbf{n}_{3} \mathbf{n}_{1} \mathbf{n}_{1} \mathbf{n}_{2} \mathbf{n}_{3} \mathbf{n}_{1} \mathbf{n}_{2} \mathbf{n}_{2} \mathbf{n}_{3} \mathbf{n}_{1} \mathbf{n}_{2} \mathbf{n}_{3} \mathbf{n}_{1} \mathbf{n}_{2} \mathbf{n}_{3} \mathbf{n}_{1} \mathbf{n}_{2} \mathbf{n}_{2} \mathbf{n}_{3} \mathbf{n}_{1} \mathbf{n}_{2} \mathbf{n}_{2} \mathbf{n}_{3} \mathbf{n}_{1} \mathbf{n}_{2} \mathbf{n}_{2} \mathbf{n}_{2} \mathbf{n}_{2} \mathbf{n}_{3} \mathbf{n}_{3}$ 12 22 212. none to 32 422 422 $\frac{1}{2}$

22 103. • 🔊 🙀 🦉 🤉 t •

Μ

Μ

Μ

22 214.2. A R = 5 K R = 7 5 . 5 K R =

ABR, ARTABLE N, ARAR s ine, is here not interaction that here is the set of 230. t 🍂 🔹 🕅 $M = \frac{22}{N} = \frac{1}{N} =$ 240.¶n _3-n n 📲 🌆 🤉 te M 22 242. M 2 M . - AR

M 2244. n N N N M

ENVIRONMENTAL STUDIES AND SCIENCES

 $\begin{array}{c} n & 2 & n & - s \\ n & 2 & n & - s \\ n & 2 & n & - s \\ n & 2 & - s \\ n & 2 & - s \\ n & -$

Coursework

-36, -36,

The Common Environmental Studies and Sciences Core

nterting R no se j zerette no je 22 nterting R no se j zerette no je 22 n terting R no se nterting se i 22 nte trans R no se 22 se 22 nterting se i 2 nterting R no se 22 se i 2 nterting R no se 22 se i 2 nterting R no s

	₩
	וא ^{מו} ניאל איזא מואי איזא איזא מואי איז גער איז
ha ha 112	ท _{พ่ พ} ำ _ห ุ่≞ ปรายิ.ศ. เ
•3 🗧 🔊 🖉 🙀 • 110	nne tene 🖓 nn
n n 12.7240	
•n 🌆 🚊 🎝 🖻 🙀 • 23	●t.12 6 ARR 312 M
• 🕼 🕫 20	

The B.S. Track in Environmental Science

nsten, skala i standing i kan ing selan tessisisin na kanalan tes i kan tessisisin na kasisin tes

h2n	1120.	227 <u>y</u> e nn ne
h2n	11	metone no me
h2n	3 0	n n
• •	29 . 113-114	
•ئ ₹	20 No. 10	
•ئ ₹	210 No. 1	s - • ∿23 ,,,,,,n, t,,,n, ⊡2n • - ,,,,n, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

tsternskarten in tarnen senterne in ts ______n ____s s s nn_s n n a karten kar

112m 22	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 ² n 23	Alen Men
112n 20	
• 2 211	
• 2 . 212	
• 2 22	t 12 2 12 12
•3 = • 2 • 120	, 9 ₃ 9n n n
• 2-10	
• 110	ne tone 122. nes 12: 12: 12: 12: 12: 12: 12: 12: 12: 12:
. 111	wine tene ! !!!
112	none tone e 122
2,31-34	เ ร็⁹ 16 เช้ ⁵ วไร
1 ¹	
400-201	n n
	ta 9: 19: 9: 49

hate on the state A BAS No Settle ne n n_osine dame.

The B.A. Track in Environmental **Policy and Economics**

n Roles na textos i ... se jir na mana na mana Na tes jis na rasinante Recenzantes na rasinantes Recenzantes na rasinantes

n n 2241	ste, 9 pr teg9 Man 10 12 10 10 10
n 🗐 🛓 🔊 🖉 , 9 240	
n 🕼 🗄 🖓 🖓 🖓 🖓	Ne en 🎾

٩	t 🦻	د⊀⊥	j¶ ა	n n_ 3	٩n	n	١Q	9 1,95	2	2
---	-----	-----	------	--------	----	---	----	--------	---	---

n n 222	n n 👰 🤊 🦛 🖓
n n 12-330	t A n n h
n n 12.33	
•3 * , 2 10	The test of Eme-

20	
•n 🗶 🛓 🗚 🙀 • 110	• • • • • • • • • • • • • • • • • • •
•n \\$2 ≞ ,\2 _N • 11	n s ne nej?
n 12 n 312	
2,31-34	18 1 1 18 18 18
2,3-3	ha ⁹ e ha AB
400-401	n n . 🤊

n ABI Chine in the A ising A A BAI A Ins in ABABISTA A BBISTO A LASA A SI 42 ne n nosine dame.

enn 99 3/27 m 9

The Minor in Environmental Science

The Minor in Environmental Science () here \mathbf{N} is a standard in the stand 210 n t = t = 300-30). t = 12 n210 n t = t = 300-30). t = 12 n n = 12 n = 1 n

	•
112n 112	rin n
he n 11	hane tage na ha
hen 22	μ <mark>ρης teshe n_{3 he}</mark> μa ^q es ^q a s ^q κη n
han 230	N2 ₆ n _{3 №}
1 ² n 23	Alan Man
112m 20	
1122n 30	n ne
• 113	2129, 9 - 9 1 29
• 1 14	227
• 20	
• 2 211	
• 2 212	
• 22 2	t 3232 . 2
ຈັງ∹ັງ∿⊠ _{ໄນ} ຄີ IIU	
•3 = 2 120	¶₃¶n ¶ n
•3 • • • • 210	ne tene 22n e - 2 _m ne 312 _m 3¶ -
	ן ב יין אוניי, אוני
	¶1
• 10	ne tone 122
• 2-110	ne tane 12. ne tane 12. ne tane 12. ne tane 12. ne tane 12.
• 1 11	ne teste ·
112	ne teste 122

n ABI 21, AB IN AB IN TO THE CONSTRUCTION OF THE INFO

n AB 1 = 12 n AB in the product of the second se

Courses

N 2 ,3 1-3 4. M 2 ,3 1-3 4. M 2 ,3 -3 ... M 400-401 n n ... M 400-401 n ...

FORESTRY

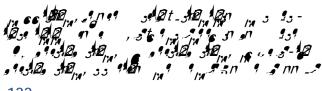
₹99. ste "9.¤°te,9. _N № 9.9 m²

FRENCH

599 nº 99 m n t 92 n 100 stor 2

GERMAN

z99 knege in t 92 in 12 ester 2


GERMAN STUDIES

* 99 no 99 m n t 9 2 n 12 stor 2

Athletic Training/Exercise Science

• N ¹⁰	
, 231	t,∮∰22,n • • 3 M ∮22,• • -
, 2 O	
, 21	
, 3 0	11, 127 12n
. ₹ 10 n ₹ 111	

2 **66 Mar on te 7 3 n A_{ho}n s 1** Man 1932 on te 7 3 n

Occupational Therapy

• r ¹⁰	
9 . 20	
• . 32	"n. 🧕 🥕 n n
. 11	ne ten en fan

n te (4) 56 1912 on te 7 3 n 7 hon 5 9 123 n 9 1 3 3 10 on te 7 3 n .

Physical Therapy

112	22. •• _ rín n
n te 512 10 -	n i fesicia n _N its sta _n ia n c ian
113	77 1
114	22° - 2 20 2
• • 10 & 110• • • 111 & 112	
• . 20	🖉 🧷 👝 🤊 🦛
• . 32	"n. 🧐 "nn

(1) (1)

Health Sciences Elective Courses

20	Agn Agn ne
210	
23	Agn Agn
M 211	
, 2 3 1	t, AB2
, 24 0	
, 20	
, 2 1	
y	

₽ ₽,	2 0	ና n•5 ዶ 🎝 nn
•	11	tone tone ⊰noh@n

 $\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\$

L.M.	IN /~		EN C	
	1	• • • • • • • • • • • • • • • • • • • •	.A_ , ,n t ,AQ	
	12	• • • •	1 A n n M	۶
<u>55</u> V	223			

Courses in Health Science

231. t_{1} t_{2} t_{2}

 $\begin{array}{c} 2 & 0. \\ n_{M} & 2n \\ n_{M} & 1 \\ n_{M} & 2n \\ n_{$

 $\frac{1}{10} \frac{1}{10} \frac$

310. 310.

 $\begin{array}{c} \mathbf{0} \quad \mathbf{3} \quad \mathbf{2} \cdot \mathbf{n} \quad \mathbf{2} \cdot \mathbf{$

HEBREW

*99 N°699 M N t 92 K 100 stor 2

HISTORICAL STUDIES

6 Aller . n 2930 . N 99

Secondary Certifications

The Major in Historical Studies

AR t 19,100 1,219,3969 45-

- 20. 112. 11 2. 113. 114. 100-1 2. 20. n to n, the n the n
- 110 (n.)

 110 (n.)

 110 (n.)

 110 (n.)

Completing a Full Major in History

 $\begin{array}{c} \mathbf{R} = \mathbf{t} \mathbf{R} \quad \mathbf{s} \mathbf{t} \quad \mathbf{s} \quad \mathbf{s} \mathbf{t} \quad \mathbf{s} \quad \mathbf{s$

 $\frac{1}{3} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{2} \frac{1}$

 $11 \cdot n^{n} 2 n^{n} n^{$

22 . no 10 in to 22 . (_____ 22)

 $\begin{array}{c} & 2 \\$

- 3 Alle 1 n Al

Learning in Common Courses

 $\begin{array}{c} 103. n \\ 103.$

 $\begin{array}{c} 104. n \\ 104.$

Pre-Health Professions Courses

Interdisciplinary Courses

 $\begin{array}{c} \bullet & 110. \ \mathsf{n} \bullet & \mathbb{Z}^{\mathsf{n}} \mathsf{n} \bullet & \mathsf{n} \bullet & \mathbb{Z}^{\mathsf{n$

0 n en estar e 1269 22, 10 - 3 40 - 2 16 n 22 1 22 m 22 2 1 2 m 22 2 m 2

esne te na ₹ 213. n

214. 2 32 M M M M • 21 . AR AR AR AR : 10 = 1 , 12

A2 n te fon M^2 i on M^2 i t_{sn} R_{re} i r_{sn} R_{re} R_{re} i r_{sn} R_{re} $R_$

220. nn, t_{3} . (p 220. 220) 2 t_{3} t_{3} t_{12} h_{11} h_{12} 220) 2 t_{3} t_{3} t_{12} h_{11} h_{12} h_{13} h_{13

3) n n \mathbb{Z} n $(\mathbb{D} = n + \mathbb{Z} = 3)$ n n n t \mathbb{Z} n $\mathbb{Z} = 2$ $\mathbb{Z} = 2$

• 3 3. n • n• • n• j- 2 ⊥ • 2 (⊥ • 2, nn 3 3)

ABIN te & ABI net s 1 1 10 AR 3 10 AB - 16

● * 3 . 9 . 9 . B . B . AR 9. AP

Interdisciplinary Majors for Middle Level Teacher Certification

n test 100, 112n 11, 12n 10 n 113 n N 1 2 2 112, 1 29 10 n 113,

3 1 30-1 12 h. N 30 - If • 12.9 % ა 🕴 ladala. n. ٩,,**٩,**,٩,, R I I I J J n 123 A 3 1 on test 1 2, 2 to 2 3 2 1 0, 1 1, 21 n 12 1, 21 (122 h. , IN 12

 100, 112pe f1, 12n
 10 ne
 12

 10
 12
 112,
 10 ne
 113,

 10
 10
 111, no
 10
 113,

 10
 111, no
 130, cto
 131,

 10
 110, 120no
 130, cto
 131,

 10
 21
 110, 120no
 130, cto
 120, 131,

 10
 21
 10
 120, cto
 120, cto
 120, cto

 10
 21
 10
 120, cto
 130, cto
 120, cto
 120, cto

 10
 22
 10
 20
 10, cto
 10, cto
 120, cto
 120, cto

 10
 12
 20
 10
 10, cto
 <

INTERDISCIPLINARY MINORS

Africana Studies $n_{\rm M}$ $n_{\rm M$ $3 + \frac{1}{10} + \frac{1}{$

Informatics

International Studies

e Mare, ja e e Aneje

| •n ₩2 ± , 12 _h , • 23 | n 1212 n e-
312 en 1212 - |
|--|--|
| •n \2 2 ≤ ,\2 _h ,• 34 | n Artar Ar
Artar Ar |
| , • Lete 122 | -3, 4 12 12 1 |
| , 123 | |
| , • 12 124 | , ¶∆2nt>nt ₃n
A2 is ⊠ is |
| rn, Men 113 | t _a te _{- n} ann |
| n,¶n2n 2 | n the n |
| ₩ 2 •24 | tst., 18, 12, 12
312, 12, 12, 12, 12, 12, 12, 12, 12, 12, |
| ₩ 2 • 24 | sta ska na-
sta stata |

* n_{μ} $A = 1 2 a^{\circ}$ $A = 1 2 a^{\circ}$ $A = 1 a^{\circ}$

Media Studies

N 77 N 8 7 N 1086 on to 7.2 n the step 111 t n t M = 2 0-2 M = 2 0 2n te te she she n te she she te the stern 1, 12 ,n tr 2.2 $n^{1} P_{1} n_{0.3} n^{1} P_{2} n_{0.3} n_{0.4} n_{0$ •3 131 , n. t. 12, n 22 12 230 t. 12 1 12 -

, 3 0 - 1

| •3 113 | 212n 🚬 🖣 १९ २९ , 🖓 🖉 🤇 |
|--------|------------------------|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

the set of the state of the st

| 229. Ja 341 | n • 1222.
13 • 14 • 14
13 • 3 te • 15 • ta te • |
|---|---|
| Agn. 23 | n • 12 t-
n • 00-1 00 |
| t 🞾 1 | n • the t |
| • A≊ <i>p</i> * 2 | |
| en 198 ± 118 139 2 | |
| 🎙 🎝 nn. 34 | 🎝 nnn n _g n 🖣 |
| , 13 | |
| , • Lan 240 | |
| n 1, 35 2222 | n |
| n 1,20-2,30-3 | • • • • • • • • • • • • • • • • • • • |
| n , 3 1-3 4 | ¢ د *ډ _{ا €} ا |
| n , 3 t 2 .
2 , 3 -3 | |
| n • • • • • • • • • • • • • • • • • • • | n n • -> |

| | s 12 _ 211 12 9 n -
s tas 2 9, nn |
|---------------|--------------------------------------|
| n 📲 🛓 🖉 🙀 2 0 | |
| n 12n 310 | • 2 5 • |
| n, hen 3 | |

sien west 2 nters ntwest 2 nters n_osin invest 2 nne 2 sin n_osin invest 2 nne 2 ne. Sterne in no sin 12 nter sterne nen no sin ter 2 ser a sterne nen no sin ter 2 ser a stales to a sing the Angelthema

 $\begin{array}{c} \blacksquare 1 \\ \blacksquare 2 \\ \blacksquare 1 \\$

ITALIAN

JAPANESE

LATIN

399 no 99 m t 9 2 18 100 stor 2

MANAGEMENT

399 on 10 10 - 10 100 22

MATHEMATICS AND COMPUTER SCIENCE

Mathematics

teel ng s n en te ARI en s i A ii Aii Aii An n

 to
 3
 2
 n
 te
 220,

 24
 ,324,34
 ,34
 ,34
 ,34
 ,3
 , 3

 24
 ,324,34
 ,34
 ,34
 ,34
 ,3
 , 3
 .

 24
 ,324,34
 ,34
 ,34
 ,34
 ,3
 , 16
 3
 .

 21,2
 4,2
 ,2
 ,33
 ,3
 , 16
 3
 343.

 21,2
 4,2
 ,2
 ,33
 ,3
 , 16
 3
 343.

 20,0
 21,0
 21,0
 21,0
 21,0
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 16
 <td

 $\begin{array}{c} \mathbf{M} & \mathbf{$

- $\frac{1}{121} + \frac{1}{121} + \frac{1}$
- ost A⊇≞ oA⊇_{IN}o, oj.

 $\begin{array}{c} \mathbf{x} \mathbf{y} \mathbf{z}_{\mathsf{h}} \mathbf{z}_{\mathsf{h}}$

 $\begin{array}{c} \text{st} 2 = 12, \\ \text{n} + 12, \\ \text{n} + 12, \\ \text{n} + 12, \\ \text{n} + 1, \\ \text{n}$

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1</

• _ 18 nne e te 312 n • 312 n.

3369 m 2 n 49 29 ÅR 49430 312 MR9 4.

The Interdepartmental Major in **Computer Science**

Courses in Mathematics

100.2. 100.2

101.2. 120 no N

 $\begin{array}{c} 211. \\ m - 3 \\$

2 4 (n 2 221). 2 + t = 221. 2 + t = 22 + t = 2

 $\begin{array}{c} t_{\rm N} = 1 \\ t_{\rm N} =$

- 34 (n 340). 2 27nn 2/2 t 27nn 3/2 t 27nn 3/2 t 27nn 3/2 t 27nn 3/2n 3/2n
- $\begin{array}{c} 3 & (n & 1 32). \\ n & t_{3} = 2 \\ 2 & n & t_{3} = 2 \\ 2 & n & t_{3} = 1 \\ 1 & t_{1} =$

 $\frac{1}{10} = \frac{1}{10} = \frac{1}{10}$

n 2 0. 32^{2} 12^{2} 12^{2} 12^{2} 12^{2} 12^{2} 12^{2} 12^{2} 12^{2} 12^{2} 12^{2} 12^{2} 12^{2} 12^{2} 12^{2}

MODERN LANGUAGES AND LITERATURES

 $\begin{array}{c} \mathbf{A} = \mathbf{n} + \mathbf{A} + \mathbf{n} + \mathbf{n} + \mathbf{n} \\ \mathbf{a} = \mathbf{n} + \mathbf{a} + \mathbf{n} + \mathbf{n} \\ \mathbf{a} = \mathbf{n} + \mathbf{a} + \mathbf{n} + \mathbf{n} \\ \mathbf{a} = \mathbf{n} + \mathbf{n} + \mathbf{n} + \mathbf{n} + \mathbf{n} + \mathbf{n} \\ \mathbf{a} = \mathbf{n} + \mathbf{n} + \mathbf{n} + \mathbf{n} + \mathbf{n} + \mathbf{n} \\ \mathbf{a} = \mathbf{n} + \mathbf{n} + \mathbf{n} + \mathbf{n} + \mathbf{n} + \mathbf{n} \\ \mathbf{a} = \mathbf{n} + \mathbf{n} + \mathbf{n} + \mathbf{n} + \mathbf{n} + \mathbf{n} \\ \mathbf{a} = \mathbf{n} + \mathbf{n} \\ \mathbf{a} = \mathbf{n} + \mathbf{$

 $\frac{3}{N} = \frac{3}{N} = \frac{3}$

Teacher Certification in a World Language

Dual Certification in World Languages

, 110. ເອີ້ອງ ອີ

M = M = M = M = M = M M = M = M = M = M M = M = M = M = M M = M = M = M = M M = M = M = M = M = M M = M = M = M = M = M M = M = M = M = M M = M = M = M = M

 $\begin{array}{c} 1 & 0-1 & , 2 & 0-2 & , 3 & 0-3 \\ 3 & M & 0 & 2 & , 3 & 1-3 & 4. \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & &$

400-401 n n . . .

German

 $\begin{array}{c} 3 & 1 \\ 1 & 2 \\$

22 344. n t_m 22. .

Italian

<u>, 12 -</u>

34.

_! }Ø

M 3 . 3 - 142 M 200 N 1 1 ₹**9** " M S S M the matrix K M to K M to

3. 42, 14 10 stel. ₹ 🖣

📲 🙀 🖓 🖓 🖗 🕼 🎘 🖉 🚬 🖓 👖 210, 21 , 🙀 n 🙀 n 3 9 200-1 9 ... te # 10 29 . t 2 1 ... (

20

3 0.20, - 9 10 te 99 12 2 - 9 12 3 te9 20

 $\begin{array}{c} \text{Intropy}{} \text{Intropy}{$

1 0-1 ,2 0-2 ,3 0-

Learning in Common Requirements for Music Majors

the network of the second sec

Departmental Requirements

the state of the

t 2, t 2, t 2 140.2-141.2, 240.2-241.2,

3 3h the the solar in the the t 140.2-141.2, 240.2-241.2, 322.2, t = 1, t = 1,t 2 3 . n 3 _ 13.2 ,n to 7 t 140.2-141.2, 240.2-241.2, 522.2, 554.2, 33 .2, 340.2, 342.2, 3 4.2, 3 .2. n₃ 1 .2 n to t t_{10} 2 100 1 100 2 100 10 2 100 10 2 100 10 2 100 10 2 100 100 2 100 2 100 100 2 100 100 2 100 100 2 100 100 2 100 100 2 100 100 2 100 100 2 100 100 2 100 100 2 100 100 2 100 100 2 100 100 100 2 100 100 2 100 100 100 2 100 100 100 100 2 100 n n t 2 n n 2 n n t 2 n n 2 n n t 2 n n n t 2 322.2, 334.2, 33 .2, 340.2, 341.2, 342.2, 1. the issue of the interval of the issue of 3 n. t 🕼 3 3. n. 22. n t 🕫 t 🎎

The Minor in Music

t 2 140.2 t 141.2, t 2 1 .2

1 .2 no. 10 .9 no. 10 μ n

The Interdepartmental Major

The Minor in Dance

= 12 = 12

• **n**• N 141.2. t 22 12 N 141.2. t 22 12 N 141.2. t 22 N 141.2. t ▶ = 240.2. t 100 100 ₹ 241.2. t 341.2. t $\mathbb{Z}_{h_{1}}$ $\mathbb{Z}_{h_{2}}$ $\mathbb{Z}_{h_{3}}$ $\mathbb{Z}_{h_{4}}$ \mathbb{Z}_{h_{4 **Practica**

2 .1, 2 .2, 3 .1, 3 .2. $n_{\rm N}$.9 $n_{\rm N}$ n_{\rm

2 1.1, 2 2.2, 3 1.1, 3 1.2.
 3 to 0 0 , 3 to 0 , 3 to 0 0 , 3 to 0 , 3

tsten prin bele stel _{in} prin plenes 1.38 -1919 s. 2n - 91 nej 2ne en2t kapst 1₁₀ ne nkal . prika tel 2 kape in bele stel ._{Ne}st 1₁₀ - 28e stel e stel pron le

1 0-1 ,2 0-2 ,3 0-3 . 1 0-1 ,2 0-2 ,3 0-3 . 2 ,3 1-3 4. 2 ,3 1-3 4. 400-401 n n . 2.

Courses in Performance

the maximum sector $t_{\rm M}$ and $t_{\rm M}$ and the transmission the transmission to the tra

Private Lessons

011 n h

120.1. t 🞾 - 👌 stie 💦 👫 s 💷 • M M 120.1. t = 1 2 t = 1 t

the s ? s?es w? ? ??? ? the n ?. n_e

130.1. 13

130.1. -3 M_{10} m_{10}

- 13 .1.
- 140.1. ne . In
- 1 0.1. \mathbb{A} \mathbb{A} \mathbb M
- $\frac{1}{10}$ $\frac{1}{10}$

1 0.1. n 232

1 0.1. \mathbb{R}^{2} $\mathbb{$

230.1. 🖭

230.1. -3230.1. -3230.1. -3240.1. -3230.1. -3230.1. -3230.1. -3240.1. n_{0}^{-1} 230.1. -3230.1. -3230.1. -3230.1. -3230.1. -3230.1. -3230.1. -3230.1. -3240.1. n_{0}^{-1} 230.1. -32 240.1. ne .

240.1. no mM 240.1. no mM 24 32 m 32 m 32 mS 2 m 32 m 32

NATURAL RESOURCE MANAGEMENT (COOPERATIVE)

nn 🔥 🧛 n 🖕 🖓 👔 🕯 t 🐙

 m^{n} m^{t} m^{t

stating in some stating in the state state in the state i

The Major in Natural Resource Management

 $\begin{array}{c} \text{structure}\\ \text{structu$

Neuroscience Co-Requisite Courses

| 113 &
114 | 2127; • • • • • • • • • • • • • • • • • • • |
|----------------------|--|
| | in -3 2 ⊡?n ۹-
s• n t ± .> |
| | M - 3 2 22 m 1,3
M + 1 ± 2 2
M 2 ● 1,3 - 1 B 2 |
| 9 ₹ ₹ 10 -110 | |
| 211-212 | |
| 120-121 | n t,992, A2 |

| 342 | |
|-----------|------------------------|
| 3 0 | t Man |
| 3 | n 1, t 2 h 3 |
| , 3 1-3 4 |
 |
| , 3-3 | 12 ₆ ⊰ 3 ts |
| , 400-401 | n n |

| 400-401 | IV | n n | |
|---------|----|-----|--|
| | - | | |
| | | | |

 $\begin{array}{c} 211 \\ \text{sn} \\ \text$

Neuroscience Elective Courses

) • _t _• • tn 12n

| 210 | | 2121 |
|------|----|-------------------------------|
| 2 n. | 32 | •_• \$12n n•
\$12, • \$23. |
| / 32 | | 12, 1 12, |

 $\begin{array}{c} 3 3. tn 2 \\ M & M \\ 2 &$

NURSING

 $\begin{array}{c} 2 \boxed{210} n \\ 3 \boxed{210} n$

Alaes as an not the normal transformer that the normal states the normal states and the

string and single string of the son m - Market and the son m - Market and the son m - Market and son m

Graduation Requirements

t t
$$_{3}$$
 2 2 2 n $_{3}$ 0 $_{4}$ $_{5}$ 2 2 $_{1}$ n $_{2}$ $_{1}$ $_{1}$ $_{1}$ $_{2}$ $_{1}$ $_{1}$ $_{2}$ $_{1}$ $_{1}$ $_{2}$ $_{1}$ $_{1}$ $_{2}$ $_{1}$ $_{2}$ $_{1}$ $_{2}$ $_{1}$ $_{2}$ $_{1}$ $_{2}$ $_$

Undergraduate Courses in Nursing

11 . n t 32 A M te 🦗 👘 🖷 3 5 J 1212 2. 22nen 1 312 🤊 n t 2 A24242 n to 22 A2 2 2 N A2, to 22 A2 2 hø. ۹ و و ۱ 212 n 212 m Μ Allet - , , , , t s te - , , 2 ? A n 12 , 10 no 16 12 12 Internet in the internet in the internet in the internet internet in the internet internet in the internet i $\begin{array}{c} 104. \\ 1$ All talle o an solo n 103 M 3 9 1 (Dr 10 2 2 2 2 21) · she in charlen - AR , staster 3 Μ $\frac{1}{2} + \frac{1}{2} + \frac{1}$

M 31. 2 t 2 M 31. 2 t 2 M 31. 2 t 2 M 31. 3

, = 321. 💦 • 32 • • 12 🔊 3 AR to AR 1 293 R on to 5 29 j 3 9 AR

, ₹ 322.¶n t₋312_{hv} 3₀ 12 , 123 M

() 322 (3322) 🦷 🖺 🤉 🖊 🛛

, s 331.2. • "n n

Μ

, 📲 332.2.9 🍳 🔐 n n Μ

t n M^{2} M^{2}

M _t 312 [m (_p = 340)] $\begin{array}{c} & 2 \\$ n 2 not the transformed to the t

 $M_{3} = 1 0 - 1 , 2 0 - 2 , 3 0 - 1 0 - 1 0 - 2 0 -$

RN to BSN Courses in Nursing

M 20 sn 20 k t 20 k t

M n to 2 m n s 331 n 2 m n s 331 n 2 m n s 31 m 31

 $M = \frac{332}{10} + \frac{1}{10} + \frac{1$

M 334 999 9 20 M K M 10 M Algentes on 12 3 9 M Stephen 12 m

M 12. n 12.

J®211, nn nu istrikuvin ne nt_he J®m - nn istrikuvin ne neizes s istrikuvin ne neizes s istrikuvin ne mie

Adult-Gerontology Primary Care Nurse Practitioner Courses

20. In $n t_{M}$ ts, 20. In n t ts,

Nel en en en eta set

 $\begin{array}{c} & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & &$

 $\begin{array}{c} nn & 2 \\ nn &$

M 22. The first f

Clinical Course Leader Courses

M 2 m to 2 m 2

 $\begin{array}{c} 2 n t = 123 \\ n t = 23 \\ n t = 3 \\ n t = 12 \\ n t = 12$

Family Nurse Practitioner Courses

OCCUPATIONAL THERAPY

•n • • • • • • • • • • • • • •

Occupational Therapy Program Vision

Occupational Therapy Program Mission

Occupational Therapy Program Goals

- $\begin{array}{c} s_{\rm NV} = s_{\rm N}^{-1} \left[\begin{array}{c} s_{\rm N} & s_{\rm N} \\ s_{\rm NV} = s_{\rm N}^{-1} \left[\begin{array}{c} s_{\rm N} & s_{\rm N} \\ s_{\rm NV} = s_{\rm N}^{-1} \left[\begin{array}{c} s_{\rm N} & s_{\rm N} \\ s_{\rm NV} = s_{\rm N}^{-1} \left[\begin{array}{c} s_{\rm N} & s_{\rm N} & s_{\rm N} & s_{\rm N} & s_{\rm N} \\ s_{\rm NV} = s_{\rm N}^{-1} \left[\begin{array}{c} s_{\rm N} & s_{\rm N} & s_{\rm N} & s_{\rm N} \\ s_{\rm NV} = s_{\rm N}^{-1} \left[\begin{array}{c} s_{\rm N} & s_{\rm N} & s_{\rm N} & s_{\rm N} \\ s_{\rm NV} = s_{\rm N}^{-1} \left[\begin{array}{c} s_{\rm N} & s_{\rm N} & s_{\rm N} & s_{\rm N} \\ s_{\rm NV} = s_{\rm N}^{-1} \left[\begin{array}{c} s_{\rm N} & s_{\rm N} & s_{\rm N} \\ s_{\rm N} & s_{\rm N} & s_{\rm N} & s_{\rm N} \\ s_{\rm N} & s_{\rm N} & s_{\rm N} & s_{\rm N} \\ s_{\rm N} & s_{\rm N} & s_{\rm N} & s_{\rm N} \\ s_{\rm N} & s_{\rm N} & s_{\rm N} & s_{\rm N} \\ s_{\rm N} & s_{\rm N} & s_{\rm N} & s_{\rm N} \\ s_{\rm N} & s_{\rm N} & s_{\rm N} & s_{\rm N} \\ s_{\rm N} & s_{\rm N} & s_{\rm N} & s_{\rm N} \\ s_{\rm N} & s_{\rm N} & s_{\rm N} & s_{\rm N} \\ s_{\rm N} & s_{\rm N} & s_{\rm N} & s_{\rm N} \\ s_{\rm N} & s_{\rm N} & s_{\rm N} \\ s_{\rm N} & s_{\rm N} & s_{\rm N} \\ s_{\rm N} & s_{\rm N} & s_{\rm N} \\ s_{\rm N} & s_{\rm N} & s_{\rm N} \\ s_{\rm N} & s_{\rm N} & s_{\rm N} \\ s_{\rm N} & s_{\rm N} & s_{\rm N} \\ s_{\rm N} & s_{\rm N} & s_{\rm N} \\ s_{\rm N} & s_{\rm N} & s_{\rm N} \\ s_{\rm N} & s_{\rm N} & s_{\rm N} \\ s_{\rm N} & s_{\rm N} & s_{\rm N} \\ s_{\rm N} & s_{\rm N} & s_{\rm N} \\ s_{\rm N} & s_{\rm N} & s_{\rm N} \\ s_{\rm N} & s_{\rm N} & s_{\rm N} \\ s_{\rm N} & s_{\rm N} & s_{\rm N} \\ s_{\rm N} & s_{\rm N} & s_{\rm N} \\ s_{\rm N} & s_{\rm N} & s_{\rm N} \\ s_{\rm N} & s_{\rm N} & s_{\rm N} \\ s_{\rm N} & s_{\rm N} & s_{\rm N} \\ s_{\rm N} & s_{\rm N} \\ s_{\rm N} & s_{\rm N} & s_{\rm N} \\ s_{\rm N} \\ s_{\rm N} & s_{\rm N} \\ s_{\rm N} \\ s_{\rm N} \\ s_$

Program Accreditation

$\frac{12}{10} + \frac{12}{10} + \frac{12$

Retention in the Occupational Therapy Program

- 4. st_{m} , n, a_{m} , a_{m} , a

Leaves of Absence and Withdrawal

- 99 990 9 . n te 96 t 39 996 🖉 🕸

10 12 12 & 12 , 12 -

10 MM MEIL α ME β MM n t A 3 2 m t 23 st n n t sten t α (t in term 23 st n n t sten t α (t in term 2 β sten β (t in term 2 β sten β sten β (t in term 2 β sten β sten

 $\begin{array}{c} n & t & n \\ n & n \\$ 10.

3 • • _ 🖉 n• j

20 c n e e t stelle - E stelle -

n $t_{\rm h}$ 3 $k_{\rm h}$ n $k_{\rm h}$ $k_{\rm h}$ $k_{\rm h}$ $k_{\rm h}$ n $k_{\rm h}$ $k_{\rm h}$ $k_{\rm h}$ n $k_{\rm h}$ $k_{\rm h}$ $k_{\rm h}$ $k_{\rm h}$ $k_{\rm h}$ n $k_{\rm h}$ $k_{\rm h}$

4 m^{1} m^{1} m^{1} m^{1} m^{1} $1 m^{1}$ m^{2} k^{2} m^{2} m^{2} $1 m^{2}$ k^{2} m^{2} m^{2} m^{2} m^{2}

PEACE AND JUSTICE STUDIES

PHILOSOPHY

 $\frac{120}{120}$ $\frac{120}{120}$

 $\begin{array}{c} M \\ \hline & & & \\ \hline & & \\$

The Major in Philosophy

• , tales n n nos 161 15 1 100 12.

The Minor in Philosophy

· Appela la or on where a on tes

that have not state on the state of the stat 222n n te n • 2 p 110, 120, 220, 222n n te n • 2 p 241, 243, 24 , 24 , 1 2 • 2 p 3 1n 3 3.

The Minor in Ethics

The winor metrics $a_{1} a_{2} a_{3} a_{4} a_{5} a_{1} a_{$

22.2 <u>2</u>.2 <u>3</u> <u>2</u>.2 <u>1</u>.2 <u>1</u> 22 - n 5 3 12 -

The Interdepartmental Major

staten as the Alexan

Departmental Recommendations

n m n te 133 1 - n t 199 12 -

Courses in Philosophy

Å@n• _ _ ≜ÅØ ≠ ₁₆ , 3° n ÅØ _n ÅØ. (3) • 120 m to the n • 12 m $\frac{1}{10} = \frac{1}{10} = \frac{1}{10}$

130 2 n the njin ne, 2 n the njin ne njin ne, 2 n the njin ne njin n

ten na karan tatan tata te -

222 3 🕼 🧷

ħ٩ **^**_____

• 12 3 12 -224 s_{n}^{t} s_{n

22.2 <u>1</u> 22.2 <u>3</u> 2.ⁿ (0. t Alen te se Ale s Alase ses $\begin{array}{c} 1 & 1 & 2 & 2 & 3 \\ 1 & 1 & 2 & 2 & 3 \\ 1 & 1 & 2 & 2 \\$

• 22 📑 n 😘 5 🕼 🤊 , L

232, \mathbb{Z} , \mathbb{Z} ,

 $\begin{array}{c} 234.2 \quad \mathbb{R}_{n} \quad \mathbb{R}_{n$

234 s 2 h s t 2' s E2 h t 2^{2} s 2^{2} s 2^{2} b 2^{2} s 2^{2} b 2^{2} s 2^{2} b 2^{2} s 2^{2} b 2^{2} s 2^{2 12.

n 🛛 🧏

t_is • s is han n te 2 - • 2 is n te n • 6 • • • n • is 0 (s • is , s • is) 0.2 (s •)40 (_) ID - 2.4

- 2 $n = \frac{12}{10}$ $n = \frac{12}$

- 323 R_{13} m to R_{3} n t s ste n R_{13} m to R_{3} n t s R_{14} R_{14

3 3 - 3 - 3stensster 3 - 3 - 3 3 - 3 - 3 3 - 3 - 3 2 - 3 - 3 3 - 3 - 3 3 - 3 - 3 3 - 3 - 3 4 - 3 - 3 4 - 3 - 3 3 - 3 - 3 3 - 3 - 3 4 - 3 - 34 -

• 1 0-1 ,2 0-2 ,3 0-3 ∎ •,2_n 2.

PHYSICAL EDUCATION

• • 333. 🐙 - 🐙

 $\begin{array}{c} 334. \\ 32.$

 $\begin{array}{c} 342. t_{2} \\ n \\ 342. t_{3} \\ n \\ 342. \\ n \\ 342. \\ n \\ 341 \\ n \\ 341$

💁 🗧 3445 n 🖉 🗧 🦻 🖉 🍠

the hyperbolic state of the solution of the hyperbolic state of the hyperboli

- 1 0-1 ,2 0-2 ,3 0-3 1 0-1 ,2 0-2 ,3 0-3 2 ,3 1-3 4. 2 ,3 1-3 4. 400-401 n n.

Courses in Earth Science

ets. nene 22 to nej, n to 22 to 12 m st n 22 to 20 nej, n to 2 to 12 m st n 22 to 20 nej, n n -2 m st n 22 to 20 nej, n n -2 m st n 22 to 20 nej, n n -1 m st n 22 to 20 nej, n to 20 ne

₹ 120. ¶3¶n m n

 $\begin{array}{c} 120.1, 131.111\\ 120.1, 120.1, 131.111\\ 120.1, 120.1, 131.111\\ 131.1, 120.1, 131.111\\ 131.1, 120.1, 131.111\\ 131.111\\ 131.1111\\ 131.111\\ 131.111\\ 131.111\\ 131.1111\\ 131.1$

s 130. In n

 $\begin{array}{c} s & n \\ s & n$

- 10 . n • N 2 . 2 . $\frac{1}{10} + \frac{1}{10} + \frac{1}{10}$

n 122, n 121, n 122, 1

 $\begin{array}{c} \boxed{22n} & n & \boxed{22n} & n & \boxed{2n} & \boxed{2n}$

The Interdepartmental Major

n 2 n te t 10^{10} n 10^{1

Departmental Recommendations

Courses in Political Science

 $\begin{array}{c} 110. \\ 10.$

.(📭 220)

, n $\leq n \leq t$ i n $t \leq n \leq 2$ ≤ 12 ≤ 12

 $\begin{array}{c} \bullet & 221. \\ & \bullet & 221. \\$

Pre-Health Professions Club

Pre-Health Professions Club $n_3/2$, $t_1/2$, $h_1/2$, $h_2/2$, $h_3/2$, $h_2/2$, $h_3/2$, $h_2/2$, $h_3/2$,

| • | R. | ۹. ը | | _ n | n. | • D , A | | 🧈 n | n, |
|----------|----------|-----------|--------|-------------------|--------------|---------------------------|------|------|------------|
| -3
-3 | k |
Ini * | ు | ۹n _e : | 3 ¶ • | ۹ ۲۹۸۹
۳۹۹۹ ۹۳
۱۹۹۹ | 't | νiX. | 1 p* te, 1 |
| K | ħ٩ | ٩ | ' nv ' | If | 9 | ა¶¶n _e | 93\B | | 7 |

The Major in Psychology

nn nn nn \mathbb{R}^{2} ann nn \mathbb{R}^{2} ann nn \mathbb{R}^{2} ann \mathbb{R}

-sting ten isision-

| n | 3 | 977 | ٩ | t, | -7 | |
|---|---|-----|---|----|----|--|
| | | | | | | |

| n | | |
|-------------|-----|---|
| 9 .₹ | 120 | |
| . | 211 | (|
| Ģ.₽, | 212 | |

| _t _s | ٩. | 9429 - n 12 . t 39 (1, n te 7) |
|---------------------------|-----|--------------------------------|
| ۹. | 31 | n 🙀 🖉 🛡 🥕 nn |
| ļ. | 320 | |
| 9 . - , | 33 | |

| _t s | | |
|------|----|----------------|
| Ģ₽, | 32 | . <u>.</u> |
| Ģ₽, | 33 | • 🦾 nn 🏚 - • 🖧 |

| _t _¶¶ | | 🖉 , t 🔊 (1,n t 🔊) |
|---------------|-----|-------------------|
| 9 ., (| 340 | kn •∕2 • .≯, n n |

| ļ. | 3 1 | • • • # 🙀 • 🤧 n n |
|----|-----|-------------------|
| ļ, | 3 | 1 3 9 2, nn |

| tale in in | t _\$ • (1_n t• \$ |
|--------------------|----------------------------|
| • . 30 | |
| • • •31 | en 2 3, et 3-
nne, et 2 |

* 5 な 1 m 2 t 3 nn 2 n m 5 1 n n 2 ス 2 の t 2 2

| _ | N I | |
|--------------|-----|---|
| ₽ . ₹ | 3 | τ.•. \Q.•\Q⊼n _\Q.•
Γ' _{n \} Q.•.>, n n |
| Ģ ₹ | 3 | |
| 9 .5 | 3 | ₹ ¶ Å2 • Å2 • ¶n -
¶ • ₩ ■ ▲ ■ nn |
| Ģ ₹ | 3 | sel/enn
sel/enn
nn |

The Interdepartmental Major

 $\begin{array}{c} 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 2 \\ 2 \\ 1 & 2 \\ 1 & 2 \\ 1 & 3 \\ 1 &$

The Minor in Psychology

Introductory Courses in Psychology

| ა | • 1 2j | n, ⁼e | ¶n _a s¶' | | |
|---|---|----------------------------------|---------------------|--|--------------|
| ა | _⊅¶ 1
¶ t
¶ ₃ n _€ | •
•
• •
• •
• •
• | | | 3. t, 30
 |

| 19.2 | 12 IN. 19 16 | ns 🗛 , |
|------|--------------------------------------|--------|
| | 12 m, 1 to
m - 33 st2
n - 32 - | |
| | > \2_ •s ner
nn \2•t | |

| • 321n• • 322 | 212h
n • • n t - 312
n • • n t - 312
n • • 0
n • • • 0
n • • • 0
n • • • • • • • • • • • • • • • • • • • |
|---------------|---|
| • 330 | |

• t 2 • s • s 2 • s • t 2 • w (2 t 2) 2 t 2 t 2 * n n 2 *

- - • n•n • t 👰 • (•)

| . , 12 ,221 | | | |
|--|--|--|--|
| , • 113, 11 , 1 (」• • 1), 210,
2 1, 2 , 2 , 2 0, 2 3, 3 2, 3 | | | |
| $M = \frac{111, 120/12}{M}$ $M = \frac{111, 120/12}{M}$ $M = \frac{100}{M}$ | | | |
| | | | |
| * nsis ssis n t 2 n s 221, 12 -
M
N nson t 2 2 2 on 23 i on in
2 2 2 2 2 2 0 3 other t . | | | |
| ** n te 2 2 n te 2 n m o s n 2 e e
n fe sn fiss i ne e 2 e e
2 2 e e e e e e e e e e e e e | | | |
| $\frac{1}{3} n_{c} = \frac{1}{3} n_{c$ | | | |

• 230. 🕼 🛍

230. THE THE THE TABLE TO THE TABLE TABLE TO THE TABLE T

 $\begin{array}{c} \bullet & 231. \quad t_{3} \bullet & 231 \\ M \\ & M$

• 321 🖾 h 🖕 • 3 . (🖍 📑 321) $\begin{array}{c} \boxed{2} \\ \boxed{$ 1_m _2

■ 330. IN IN IN 3 . IN IN 330.

n 2 n , t 2 , t 12 n t 2 n 2 n , t 2 , t 12 n t 12 n 12 n , t 2 , t 12 n t 12 n 110n t 2 11 M

RELIGION

The Major in Global Religions

nelazzh - elazan zh t la e e n

4 (1, 1) (1, 1) (200 1, 1),

he ntern no i in tag in t o i no i gn to tag in t no i gn to tag in t no i gn to tag in t o i no i gn to i gn to i g o i no i gn to i gn to i gn o no i gn tag i gn to i gn o no i gn tag i gn to i gn o i gn to i gn to i gn to i gn o i gn to i gn to i gn to i gn o i gn to i gn to i gn to i gn to i gn o i gn to i gn o i gn to i

1.2 jn \mathbb{E} 2.2 (\mathbb{D} \mathbb{E} 2.2 1 , n \mathbb{E} (\mathbb{D} \mathbb{E} 2.2 1 , n \mathbb{E} (\mathbb{D} \mathbb{E} 2.2 1 , n \mathbb{E} 1 , n \mathbb{E} 1 .) \mathbb{E} 2.2 \mathbb{E} 1 , n \mathbb{E} 1 .) \mathbb{E} 2.2 \mathbb{E} 1 , n \mathbb{E} 1 .) \mathbb{E} 2.2 \mathbb{E} 1 , n \mathbb{E} 2. (\mathbb{D} \mathbb{E} 2.2 \mathbb{E} 1 , n \mathbb{E} 2. (\mathbb{D} \mathbb{E} 2.2 \mathbb{E} 1 , n \mathbb{E} 2. (\mathbb{D} \mathbb{E} 2.2 \mathbb{E} 1 , n \mathbb{E} 2. (\mathbb{D} \mathbb{E} 2.2 \mathbb{E}

210.

3 n 123 € 12 2 3 12 2 1€ 2 3 12 2 1€

, 211. ARR 3 AR .

21. A242 nnn n A251 - A242 A251 A252 A252 A254 son mar 2016 son stang t A252 A252 n n stang t A252 n A252 n n stang

21 • t₃ n t 🖪 🖄

 $\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$

223. 2

 $t_3 n 42$, s n n, $420t = n 4242_{N}$, $t 42^{\circ}$ $n n n n n n t_{N}$, $t_3 t_{2} n n n n n t_3 t_{2} n t_3 t_{3}$

310. s n R 2 R 2 R 3 R

1 0-1 ,2 0-2 ,3 0-3 . 12 n 2 2 ,3 1-3 4. 13 n 2 2 ,3 -3 . 14 n 2 400-401 n n

RUSSIAN

=99 _N999_M 3¹2_M - _M t 9.2_M ¹/29 step 2

SCIENCE EDUCATION

 $\begin{array}{c} 12n \\ 12n \\$

The Major in General Science/ Secondary Education

Secondary Education

The Major in General Science for Middle Level Education

3.5 to 9 10 - 299 AR 9.9 1000 - 10 9.9 42, 312 10 10

| st, 312 na 100.2 | |
|--------------------------------------|-----------------------------|
| st, 3n2 _{na} 10 | j MRs A A R n |
| s t, 312 _{na} 130 &140.2 | ji hand in si |
| s t, 3n2 _n 131 | ja kasa Alan
sa banna a |
| s t, 312 na 244 | |
| s t, 32,333,
3.2 | |
| s t, 312
330,331,332.2,
s 3 .2 | |
| st, 32 , 3 1,3 ,
3 , s 3 | ji ha sha n
s i sha ka n |

M 66 10 m, 12 n 10 n m 12 m 1 m - 112

 $\begin{array}{c} 2 & n & n & so & 23 \\ t & 32 & 331 & s & 32 & 12 & 2 \\ n & s & 32 & 10 & 12 & 2 \\ n & t & 32 & 332 & 2n & 113 & 2 \\ n & t & 32 & 332 & 2n & 113 & 2 \\ n & s & 32 & 2n & 113 & 2 \\ n & s & 32 & 2n & 113 & 2 \\ n & s & 2n & 2n & 10 \\ n & s & 2n & 2n & 10 \\ n & s & 2n & 2n & 10 \\ n & s & 2n & 2n & 10 \\ n & s & 32 & 2n & 110 \\ n & s & 32 & 2n & 110 \\ n & s & 32 & 2n & 110 \\ n & s & 32 & 2n & 110 \\ n & s & 32 & 2n & 110 \\ n & s & 32 & 2n & 110 \\ n & s & 32 & 2n & 110 \\ n & s & 32 & 2n & 110 \\ n & s & 32 & 2n & 110 \\ n & s & 32 & 2n & 110 \\ n & s & 32 & 2n & 110 \\ n & s & 32 & 2n & 110 \\ n & s & 32 & 2n & 110 \\ n & s & 32 & 2n & 110 \\ n & s & 32 & 32 & 2n \\ n & s & s & 10 & n & 10 \\ n & s & 10 & n & 10 & 10 \\ n & s & 10 & n & 10 & 10 \\ n & s & 10 & n & 10 & 10 \\ n & s & 10 & n & 10 \\ n & s & 10 & n & 10 \\ n & s & 10 & n & 10 \\ n & 10 & n & 10 & 10 \\ n & 10 & n & 10 & 10 \\ n & 10 & n & 10 & 10 \\ n & 10 & n & 10 & 10 \\ n & 10 & n & 10 & 10 \\ n & 10 & n & 10 & 10 \\ n & 10 & n & 10 & 10 \\ n & 10 & 10 & 10 \\ n & 10 & 10 & 10 & 10 \\ n & 10 & 10 & 10 & 10 \\ n & 10 & 10 & 10 & 10 \\ n & 10 & 10 & 10$

SOCIAL STUDIES EDUCATION

SOCIOLOGY AND ANTHROPOLOGY

2. n $\mathbb{Z}_{\mathbb{N}}$ 2. $\mathbb{Z}_{\mathbb{N}}$ 2. $\mathbb{Z}_{\mathbb{N}}$ 2. $\mathbb{Z}_{\mathbb{N}}$ $\mathbb{Z}_{\mathbb{N}}$

p = 12 p

The Major in Sociology

stelw slastelles e e matel n n e nes e - in patel n e .

An ten Steiner Herricht Herricht tsteiner Herricht tsteiner Herricht Alle Her

The Sociology Core

IN - 9 + tates an tig 9. 3 is a schart gng

SPANISH

SPEECH-LANGUAGE PATHOLOGY

•n• • • • • • • • • • • • •

eⁿ 23% t_{ik} 14 4 6 t 3% 6 1 41% on ivi

- . ??, n•3 ຸ່າ. ໂ. ຈຳເຫັ_{ເພ} - ອັນຳຳ_{ເພີ}/ໃນນາເຫຼ¹ໃຫ້ ເຮັ
- •

3 th 22 s t₃ , 2 n t₁ 32 m 2 3 3 23 2 4 2 2 s t₃ s t₃ , 2 n t₁ 32 m 2 3 n n₀ 2 42 s t s s s t₃ 42 s t₃ n -).39 2 2 2 3 t₃ k₁ s t₃ n -).39 2 2 2 3 t₃ k₁ s t₃ n -

• 02 • 12 • 19 - mt • 3 nn

02 me to she e to she

1 3 9 9 19 19 A _ 1_A_ n to 7.2

0 1 14

Inquiry Sequence

= 10 n 32 _ 21 22 = 11 - n t 9 s n n

- $\begin{array}{c} 12 \text{ n} \text{$
- $12 \qquad n \qquad 20 \qquad n \qquad 12 \qquad n \qquad 1$
- * 13 🖓 🙌 🦂 • • • ABIN to 5 ABIG to 393 9 3to 9 100 00 00 00 3202 -122 n 100 100 120 100

Clinical Skills Sequence

₹ • 21 _t 32 m AB- on the AB a story of establish note the note of the story of the s

z 🖲 22 🖡 nn 🥀 🐏 t 👎 snn

 $\begin{array}{c} \mathbf{M} & \mathbf{L} & \mathbf{S} & \mathbf{S} & \mathbf{M} \\ \mathbf{M} & \mathbf{L} & \mathbf{S} & \mathbf{S} & \mathbf{M} \\ \mathbf{M} & \mathbf{n} & \mathbf{L} & \mathbf{S} & \mathbf{L} & \mathbf{n} & \mathbf{S} & \mathbf{n} & \mathbf{M} \\ \mathbf{M} & \mathbf{n} & \mathbf{L} & \mathbf{s} & \mathbf{n} & \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{n} & \mathbf{L} & \mathbf{n} & \mathbf{S} & \mathbf{n} & \mathbf{M} \\ \mathbf{M} & \mathbf{n} & \mathbf{n} & \mathbf{L} & \mathbf{n} & \mathbf{S} & \mathbf{n} & \mathbf{M} \\ \mathbf{M} & \mathbf{n} & \mathbf{n} & \mathbf{L} & \mathbf{n} & \mathbf{S} & \mathbf{n} \\ \mathbf{M} & \mathbf{M} & \mathbf{n} & \mathbf{M} & \mathbf{N} \\ \mathbf{N} & \mathbf{n} & \mathbf{n} & \mathbf{n} & \mathbf{n} & \mathbf{N} \\ \mathbf{N} & \mathbf{N} & \mathbf{n} & \mathbf{N} & \mathbf{N} \\ \mathbf{N} & \mathbf{N} & \mathbf{N} & \mathbf{N} & \mathbf{N} \\ \mathbf{$

. • 23 t. • • Marsha

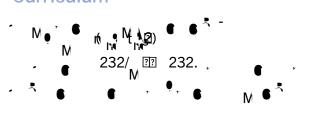
99.2312 M

Problem Based Learning Sequence

 In t_{iδ} 3¹2_{iw} θ₀[±] ¹⁹, h t t snn t snn (. . . n m n t- m^2 m^2 m

 $\begin{array}{c} n & 2 \\ n & 2$

- ≠ 9 3, •Mas η that hand are to ≯ n = 2 n = 2 n = 10 n =
- ≍ 9 4 n 1 🖈 🕸 11,9 t 🐏 snn


Mt ¶€ snn

Clinical Education Sequence

• 1 1 - t 32

 $\begin{array}{c} 2 & 2 & 2 \\ 1 & 3 & 2 \\ 1 & 3 & 1 \\ 1 & 3 & 1 \\ 1 & 3 & 1 \\ 1 & 3 & 1 \\ 1 & 3 & 1 \\ 1 & 3 & 2 \\$

Curriculum

N 9_. <u>N</u> 2 WOMEN'S STUDIES M n e j M M M A 2 → N³ e e s_Me ≁ - 11 wishere an e - 2 WRITING , n 🚛 🎾 j 🛯 🗸 1 - 11 wishere an e - 2 n "n "",• 9 the here of here in the state of the state **BOARD OF TRUSTREES** 1 a 181 & 163 **Elected Members** ٩٥ ٩ ٩ te<u>ఎ</u>22 . ి_{గు}ిమి ¶₃ <u>1</u> ¶ ,● sn•n• (•3@€) ¶₅ ⊆ ¶ ,∮ ● ¶₆¶ .25€, _M №2⁶, n ≜ № _M n ≜ ¶ , ₹. Å2n ,⊠.'1 ۹, د∙ M ••• 1 & 140, 1 NR. N 🛛 🖓 🔎 20 . 🖻 🖷 📊 n ₃∮•∍j, ⊠ M M ,ⁿ .⁴•₃ e* m′ •₃ 1 • ,• ₹, , <mark>, ,</mark> , j , **≜**⊉ , , ^{...} 12 no tos 2no . (1320) 🗚 🛛 👖 n 🕯 🦓 🛛 02 NO 1_ AO 1 130m. M[¶] 3[¶] 14⁹ M⊉1 € 41 ½2[¶] 11³, 14 312¹14 3[¶] 4 3[¶] 3 n_t,, j¶, nt₁₈99,999 201 n, A2 20 - 14 9 -16 18 18 18 A2 - 14 9 - 14 19 - 14 21 _____te_3 18 9 9 19 10, n an 19 ns tos sstef_W, ne Man s

A2 . 2 11,9 n -193 12 - n1 . • n_' 13 1 1 , ",¶¶₆, n_{l€}'4 AR, AR, 3, ٩٦ ٩ , <u>و به الم</u> 20 _ n t _ & 2 _ s 20 -• n t _ , • t _ , • 2 & _ , • t _ , ¶3 **1** ¶ ,● **Ex O** cio Members 🔹 ¼ ເພນິມ] ٩٥ ٩٩ ,

•n 🔐 🖾 🎜 🗸 🗸 0 ¶3 **1** ¶ , ••• ** ** ** ** ** ** ** ** Å2 .ªs . . Å2.•] ۹₃ ۹ ۹ 🏓 ₪ 🕍 🖉 👎 👖 🖕 ≫03 ٩, ٩ ٩ , ••• 12 m n 12 n 1 hand 12 ha [?]?**.** • • 2 - • , _••• he ••• 20 weten the test of t 🕼 🧃 🔊 🧷 • 🖣 🖩 🔥 , han 12; (13,2,) •5 🖈 🌘 ts ' 1 ÅΩ,∎sj,

O cers of the Board n_{m} m_{n} n_{n} n_{n}

Emeritus

 $\begin{array}{rcrcrc} & \mathbf{n} & \mathbf{n} & \mathbf{n} & \mathbf{n} & \mathbf{n} & \mathbf{n} \\ & \mathbf{n}_{3} & \mathbf{1} & \mathbf{n}_{1} & \mathbf{n} \\ & \mathbf{n}_{2} & \mathbf{n}_{1} & \mathbf{n}_{2} \\ & \mathbf{n}_{1} & \mathbf{n}_{2} & \mathbf{n}_{1} & \mathbf{n}_{2} & \mathbf{n}_{1} \\ & \mathbf{n}_{1} & \mathbf{n}_{2} & \mathbf{n}_{1} & \mathbf{n}_{2} & \mathbf{n}_{1} \\ & \mathbf{n}_{1} & \mathbf{n}_{2} & \mathbf{n}_{1} & \mathbf{n}_{2} & \mathbf{n}_{2} & \mathbf{n}_{1} \\ & \mathbf{n}_{1} & \mathbf{n}_{2} & \mathbf{n}_{1} & \mathbf{n}_{2} & \mathbf{n}_{2} & \mathbf{n}_{2} & \mathbf{n}_{2} \\ & \mathbf{n}_{1} & \mathbf{n}_{2} & \mathbf{n}_{2} & \mathbf{n}_{1} & \mathbf{n}_{2} & \mathbf{n$

FULL-TIME FACULTY

n \mathbb{Z}_{n} \mathbb{Z}_{n

School of Arts, Humanities, and Social Sciences

Art

M 39 29 AR ARA 390 M 9 - 9 942 3 t 7 M n 9 n 9 j AR to

Communication & Media Studies Program

[™] [™] [™] [™] [™]

Economics & Business

Education

English

■ _m -, j 1.1 , n t _ 1.3 , n ... 1.3 , n ... 1.3 , n ... 1.4 , n ... 1.

Global Religions

 $\begin{array}{c} \mathbf{A}_{\mathbf{A}} \mathbf{P} \mathbf{t}_{\mathbf{A}} \\ \mathbf{P} = \mathbf{P}_{\mathbf{A}} \mathbf{P}_{\mathbf{A}} \mathbf{P}_{\mathbf{A}} \mathbf{P}_{\mathbf{A}} \\ \mathbf{P} = \mathbf{P}_{\mathbf{A}} \mathbf{P$

History

Modern Languages & Literature

Music

Philosophy

Physical Education

Political Science

4242 n42 m 1√2 m 1 m m • 1 m • m

Psychology

Sociology & Anthropology

▲ 20 _m nn ■ 9 n t 905 j 9

Theatre

425 1et nee

School of Natural and Health Sciences

Biological Sciences

M = M = M = M

Mathematics & Computer Science

Nursing and Public Health

• • • • Agj 12 n - he ton s n 📲 • then no J ¹, <u>??</u> •• <u>??</u>n •• n 🛯 🖓 t 📕 • • P • • 🐙 n Alan In r ₹t⊅_M≹∮n₃ . ₪ ٩.ᢞ٩<u>է</u>٩..

Physics

Rehabilitation Sciences

$$\begin{array}{c} & & & & & \\$$

SEMINARY FULL-TIME FACULTY

ARTIST-LECTURERS IN MUSIC

n (1,2- ,42), 🖻 🚓 . • 🖉 e - 22 kg • , . . 🍂 _22 kg • , 📲 _4 z e . 9e - n9 $\begin{array}{c} \blacksquare s_{1M} & -s j s_{1M} & -n \blacksquare & s_{2} & s_{2} & \\ \hline m & t \blacksquare & -s_{2} & s_{2} & n & -n & s_{2} & n & \\ \hline m & t \blacksquare & -s_{2} & s_{2} & n & -n & s_{2} & n & \\ \hline m & s_{2} & n & s_{2} & n & s_{2} & \\ \hline m & s_{2} & n & s_{2} & n & \\ \hline m & s_{2} & n & s_{2} & n & \\ \hline \end{array}$ 🖻 _{Na} n sn 🤨 - 🛝 🖉 🥕 , - ୩₆₃ - ୩ ມ , ୩ ມ ທີ່ 📈 📲 B_N3 N€ · _•j n•_N · 12 12 - 11 ⊠ 🤊 _n t,•339 ∹ t tÅ2Å2Å? 🙀 Å2_ have . In Ap - help . ≞_M • _Mj-t_e • wi22.2 n + 2, n . 🗉 18 18 - 1 18 18 1, 1 18 1₁₁ - 1 , no sta - the son sta • h**€**

 $(10)^{2} - 2^{-204}$ $(10)^{2} - 2^{-204}$

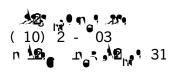
Accessability Services

Admissions

(10) 1-144 t_{1} t_{2} t_{3} t_{3} t_{3} t_{3} t_{4} t_{4} t_{4} t_{4} t_{5} t_{5} t_{5} t_{5} t_{5} t_{5} t_{6} t_{6} t_{6} t_{7} nn 12 -_{In}n ne 12 -• • J3 nn 2 _22 , , , n, 2 __22 (10) 1-1 01-213 n. 12 m. t (10) 2 - 11 - • 🕅 • 🤊 (10) 1-1 4 Αβ n_{in}nj ૧, Καβαθοσιοη οι _{Μά}τοι η - ^οηγ

(10) 1-132 • 104 n n n n 12 n t (10) 1-132 nn 2 _22 n 2 n 2 _ t = 122 k = 10 t = 122 nn № _22 > ∭jj n. № t •12 ne • 10) 1-1323 nn 12 _221 n. 12 _ t 2ns 12 (10) 2 - 3 nn 2 - 2 nn n $_{10}^{10}$ h $_{11}^{10}$ h $_{12}^{10}$ nn 12 _12 nt n 12 n 12 12 12 nn_{M} _224 nt_{M} $n M_{M}$ t

Art


1212 519 21-121 9 ng 1 219 (10) 1-14 3 n t₃ _2 3 3 9 j n 12 2 12 t

(10) 1-1 34

$$M = 101$$

 $n = 101$
 $n = 10$
 $n = 10$
 $M = 10$

Biological Sciences

```
\begin{array}{c} \begin{array}{c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &
```


• ARR 30 + t nes 22 m (10) 1-1 0 1 02 ne 12 me t • • IN 122 100 1-14 3 tanne Na ne ka_mst 12, 21.22 3.3 en 12.2 (10) 1-1 0 1.1 0 9 9 ₁₁2

Chemistry

College Central Services

 $n_{\rm NN}$ $n_{\rm N}$ $n_{$

Counseling Center

Development AB - 193 B M M - 1933, 1 2 99 19 85 31 6 AB 19 AB B (10) 1-13 nn 2 _324 nn 12 _3 nn 9 16 9 p 10 04 ne 2 10 s t (10) 1-133 nn 12 _33 12^{10} , 312^{10} , 12^{10} nn 2 _32 (10) 1-13 1 nn 2 _332 , 232 n. 2 _ 12 _ 12 _ 12 $\begin{array}{c} \blacksquare & 1 \\ \blacksquare & 1$ (10) 1-1 4 f = 2 n t + 4 f = 2 n t + 4 f = 2 n t + 2(10) 2 - 42 $\begin{array}{c} nn & 2 \\ \hline nn &$

(10) 1-1342 nn 2 _333 • n 2 _ 133 (10) 1-133 nn 2 _33 n 2 n 2 t (10) 2 - 1 Image: Solution and Soluti nn 2 _32 -3 02 ne 2 5 t, 🤘 🎝 (10) 1-133 nn 2 _332 3 n 2 w t 120 12 12 1 AR KA

Economics & Business

 $\begin{array}{c} n & 2 & 2 \\ n & 2 & 0 \\ (10) & 2 & - & 0 \\ 221 \\ 2 & n & 2 \\ 2 & 2 \\ 2 & n & 2 \\ 2$

```
n 12 _202
n 🤳
•• 21
• n• 21
n to the 2
1222 2
(10) 2 - 101
n 1 2 _20
1 t 2 1 n 2 1 t
27 • 🦨 😼
• n • 1-140

• 10) 1-140

• 21

j n 2 n • 2 m € t
12 .13 120

12 .13 120

12 .13 120

10 2 - 04
n 1 2 ____20
j 2 2 n __ n 1 2 n t
•j n 12 12
Naga 22 10 n 1 20 n 1 10 2 -
n 12 _20
jn 2 12 n 12 _ 10
116 -
( 10) 1-144
n 1 2 -214
(10) 2 - 03
n 12 ____203
(10) 1-1413
🛛 🖣 🎝 🗖 🖣
```

(10) 1-14 3 * AR 10A212 10) 2 - 3 n 212 - 212 stell 2 n 212 t n 1 12 _ _21 3 **!__!** * t n•5 * 6** (10) 1-1 1 n * 12 * _20 * _}, n• *2_M*s t 🛛 ۹,**2**,9,3

Education

99 36 nn 2 pr n N2 Na tans t n t_N2 , nn _ nn **~** A 3 . (10) 1-1 ••• 3€ nn• n,j• ••2€, n• 12₁₁₁•€t te^{i} h h h(10) 2 - ij h h h h h(10) 2 - ij h h h h h h323 (10) 1-14 2 32 ∋n 2; n, 12 m t 1 128 _ 12º n t n n 20 n n n (10) 2 - 1 99 31 ¤n Ne N2_Ns∈t 1 2 1 1 2 1 1 1 2 - 01 322 n 1 2 1 1 2 - 01 1 322 n 1 2 1 1 2 - 01

English

Finance & Administration

(10) 1-1 4

$$nn_{M}^{2}$$
 _212
 n_{M}^{2} n 212
 n_{M}^{2} n 212
 n_{M}^{2} n_{M}^{2} t
(10) 1-13 0
 nn_{M}^{2} _20
 n_{M}^{2} t

Financial Aid

FMP&C

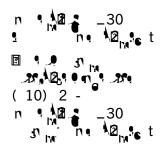
$$\begin{array}{c} & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & &$$

141 nºs-1853 ,t 22 nº 22 nº t (10) 2 - 1 141 n•3-16*3 en_m n n• 12_m•et 141 n•3-16 5 n ••• n• 2018 t 141 nes-16 ts ut 2 e ne 2 st 141 n•3-16 33 n 2 2 n• 2 18 5 1 $\begin{array}{c} 141 & n \cdot s - n \cdot s \\ 141 & n \cdot s - n$ 141 n.s.-16,5.s n.s., n.s. 2_{hs}s t

Global Religions

$$(10) 2 - 44$$

 $(10) 2 - 44$
 $(10) 2 - 44$
 $(10) 2 - 10$
 $(10) 2 - 104$
 $(10) 2 - 104$
 $(10) 2 - 104$
 $(10) 2 - 104$
 $(10) 2 - 104$
 $(10) 2 - 104$
 $(10) 2 - 22$


Graduate & Adult Enrollment

$$\begin{array}{c} 3 & 3 & 3 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & - & 14 \\ 1 & 2 & - & 14 \\ 1 & 2 & - & 14 \\ 1 & 2 & - & 14 \\ 1 & 2 & - & 14 \\ 1 & 2 & - & 14 \\ 1 & 2 & - & 14 \\ 1 & 2 & - & 12 \\ 1 & 2 & - & 131 \\ 1 & 2 & - & 2 \\ 1 & 2 & - & 131 \\ 1 & 2 & - & 2$$

Health Center

History

 $\begin{array}{c} 120, n \\ 120, n \\ 100, 2 \\ 100, 2 \\ 100, 1 \\ 100,$

Housing & Event Management

120 2299 ha 2 3 204 t, n, 2 ha 2 5 t n _ m en es (10) 2 - 24 120 22 - 24 120 22 - 24 n 2 - 3 1 3 nn e n 2 - 24 12 - 3 1 3 nn e 100 : 10. 2 (10) 1-1 4 (10) 2 - 132 11 22 19 10 2 3 2 nne 3 t 9 n n 2 10 t 120 22 19 10 2 3 2 nn . 3 319 ne 2 10 t (10) 1-1 01 • n • 2 _ 101 t_{if} anne, na 2₁₄s t (10) 2 - 03 ••• 33 n -j 📌 t n•3 m - 3 (10) 2 - 10 • n 42 _102 n j_ n 42 _102 (10) 1-144 nn 💊 🏹 🔊 🍳 n 12 _101

Institutional Research

Intercultural Advancement & Global Inclusion

t

LVAIC

Mail Services

Marketing & Communications

```
Ma n t, 👥
nn 12 ________
n t, 99, ne 12 _____
n t, 99, ne 12 _____
           Ng 9_n.
  (10) I-13 n the n the second sec
  13 ABAR 10
      (10) 1-13 2 N
nn 2 _113
•22 n 2 _ t
        (10) 2 -
       A212 🛛 "n " 🤊 📊
      (10) 2 -
       nn 12 _111
In 2 _ n 2 _ 12 t
```

Math & Computer Science

(10) 1-13 $\begin{array}{c} \blacksquare & \P^{\bullet} \blacksquare & \P^{\bullet} \blacksquare \\ \P^{\bullet} \bullet \blacksquare & \P^{\bullet} \blacksquare & \Pi^{\bullet} \blacksquare \blacksquare^{\bullet} \blacksquare & \Pi^{\bullet} \blacksquare^{\bullet} \blacksquare^{\Pi$ n • 12 - 40 - 2 -n w w ne 2 w t n 1 12 - 40 , j°n ne 12 s t 12 🗛 n 🖣 _ (10) 2 - 2

Music

 $\begin{array}{c} 2 & t \\ t & 10 \\ 10 \\ 1 & 1 \\ 1$

(10) 1-1 1 t 1 • • • • • • • • • • • • • • • • •13 •1 M n t 310 Agn ne Ag_{ne}t $n_{\rm IN}$ $t_{\rm S}$ $n_{\rm IN}$ $n_{\rm IN}$ $n_{\rm IN}$ $t_{\rm IN}$ (10) 1-1 2 the & son of the the •13 •1 in t 31 • 2 n t 2 31 t n 32 2 12 - 12 (10) 1-1 0 22 n t 10 n 11 n t 10 n 12 n t 210 ... <u>12</u>12* • n • • • n • t • 10 (10) 1-1 13 1 in t 30 2 2 2 n 2 m 5 t n TO MB (10) 1-1 0 1301 2:30 • he he he to (10) 1-1 1 •1, •1 , in t = 30 ne Alt 03 ne Almet 12 13 1 -•13 •1 m n t = 303 • s • ™ n • 2 ™ s t • t_ f • j • (10) 1-1 1 •13 •1 h 1 30 ¶ej⊈ ne Å2_m% t

Nursing

```
(10) 2 -
 <del>اہ <sub>–</sub></del> 30
 13 - 13
13 to men te 2
(10) 2 - 4
 ۹⊰ _ 30
 _1. n. 12 . t
 12 n _ n .
 Ju St to st a
 (10) 2 - 2
 ع _ 310
n - ne lent ne lans t
s n

x, 2, 9 n , 2n n , 3

(10) 2 - 20
  ۹۹ _ 30
,n ,,, n• Å2<sub>IN</sub>•€ t
(10) 2 - 30
  ۹⊰ _ 30
ene ne 2 se t
(10) 2 - 1
9₹ _ 20
• 3• 1 n• 12<sub>14</sub>% t
 n<sup>[2]</sup>Dinen
Magenann te≫a n€ €t.-
•e •
```

Philosophy

n_n¹ <u>1</u> *x*, <u>2</u>, <u>n</u> *x* (10) 2 - 1 n <u>1</u> *n* <u>1</u> *n* <u>2</u>, *n* <u>2</u> *n z n z*, *n z*

Philosophy & Religion

(10) 2 - 3 n 1 2 - 10

Physics & Earth Science

Political Science

(10) 1-1 (10) 1-1 (10) 1-1 (10) 1-1 (10) 1-1 (10) 1-1 (10) 1-1 (10) 1-1 (10) 1-1 (10) 1-140 (10)

President

(10) 1-13 4 nn = 2 _201 n = 2 = 201 n = 2 = 201 n = 2 = 10 (10) 1-13 4 nn = 2 _2 _ nn = 2 = 100 = 1

Provost

(10) 2 $n_{1}n_{2}$ -2 nn $n_{2}n_{1}n_{2}$ -2 nn $n_{2}n_{1}n_{2}$ -2 nn $n_{2}n_{1}n_{2}$ -2 $n_{1}n_{2}$ $n_{1}n_{2}$ -2 $n_{1}n_{2}$ -2 $n_{1}n_{2}$ -2 $n_{2}n_{2}$ -2 $n_{1}n_{2}$ -2 $n_{1}n_{2}n_{2}$ -2 $n_{1}n_{2}n_{2}n_{2}$

Psychology

, n 🚛 🗚 🕰 (10) 1-1 1 22 22 n. 22 AR to 10 .ts1et ne Å⊠_{he}tst snen (10) 1-1 2 .if a¹², -•• 231 • ^t_{hu}• n• 2_h•• t (10) 1-1 4 22 12 n n 22 •• 224 n m^pm² n 2^μs t 19.1., 12. n I m (10) 1-1 0 230 230 230 230 99 Ngj

Reeves Library

"n_{ift}¶n ne M₂_{ha}s_€ t . •• • 🔊 🖓 • . 111 nest ne 2 het . •• • 224 e¶ _{IN}j ne N₂_{IN}se t الم المركز الم</l> . •• • 📌 🗛 • 11 Agjen ne Agne t (10) 1-1 4 , 99 9 A 🖉 9 n 99 9 9 , nn 11 , 💶 🖢 🥕 🕼 ෫ 11 n m^{pr}m ne Ma_ms t •••• **224** Azes ne Azest NB. ..

```
203

- n 2_{m} t

203

- n 2_{m} t

204

- n 2_{m} t

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 204

- 20
```

Registrar

 $n = \frac{1}{10}$ 1 - 13 3 $n = \frac{1}{10}$ 1 - 13 3 $n = \frac{1}{10}$ $n = \frac{1}$

```
(10) 1-211
 144k, n, 12 . 213
   ne Alget
 (10) 2 - 20
1441; n , n , 22 2
n 33; n , N , 22 2
n 33; n , N , 22 1
  • , 🚾 • _
on e læ,ne milesen e
 (10) 1-213
1441; n, n, n, 22, 20
12 . n, 2<sub>m</sub>; t
10^{\circ} m n -

10^{\circ} m n -

10^{\circ} m n -

10^{\circ} 2 - 234

10^{\circ} 2 - 234
(10) 2 - 204
1441; n , n , 10, 204
n , 10, n , 10, 5 t
 Å&,, n n _≯2 <sub>№</sub>
 1,12, 0, 1, 11.
(10) 2 - 232
(10) 2 - 214
                          t ¶∮ snn
1441; n, n, n, 212, 212, 1, -
n, 2<sub>14</sub>; t
144k, n, M. 20, 20
 12 1 = 31/2 1Rj
(10) 2 - 23
1441: n 10 12 , c 220
312 2j n 12 c t
\begin{array}{c} 12 \\ 39 \\ 10 \\ 10 \\ 2 \\ 20 \\ \end{array}
 144k, ny 🙀 🔎 , 💕 23
 264
```

MARI Ongi Mi (10) 2 -104 102 n 104 102 n 104 104 n 104 (10) 1-1 22 n^{p°}n ⁹n⁹ 10 ♪_N2n n 2_Ns t .**₹**\2h (10) I-1 2 n t 2 nn 2 n 02 n 2 n (10) 1-14 4 nt 3 N n t 3 N n n 2 , n _{ha} e s – "n • n • 10) 1-1 21 n^{D®}ha⁹ha⁹ n ≗e n e A⊠_{ha}s t I > t n_mj >3:5:5:5 • 2n₀ m _ & t n•3:5:5 (10) 1-1 1 n n 2 n t 11213 39 n 1 29 n 1 1 24 , 110 100 2 no 12 m t (10) 1-1 34 ne 2 t te 1 - 1 - 3 10) 1-14

Sociology & Anthropology

```
Ler nn
 10) 2 - 2
                 n na na na
99 312
,nn n• 20, € t
 n∮2n ⊈
₹¶,¶3¶
 (10) 1-131
•••• 313
n 1_ ne 2 ne t
n t 103
n 1 2ren 1 13
(10) 2 - 11
۹۹ 214
ent 🐜 🗧 ne 🌆 🙀 t
  j. • • • • • • • • •
  Aralas en i are lane Anatan
 (10) 1-1
12122 ° 'n ww -
 (10) 2 -
99 31
n∍n<sub>mm</sub> _ n• 12<sub>m</sub>s t
 42- •5t.
1292 22 10 42 20
(10) 2 -
99 31
n•stan• № 12m% t
 (10) 2 - 14
(10) 1-141
314
39 1-- 18 2j n. 2<sub>n</sub> t
```

Sodexo

(10) 2 - 433

n = 2 n = 2

St. Lukeo. 15 54 rowp26or

(10) 2 - 20 10 312 10 1-13 4 10 1-13 4 10 1-13 4 10 1-14 10 1-1410 1-14

Student Success

ATHLETICS STAFF

 $\frac{1}{2} = \frac{1}{2} = \frac{1}$

• n• Å2_№• t N [•]3 [■] N ⁹ , N [™] ⁰ 10- [™] 1-1 34 n i ne ka_{mi}st 10- 1-1 2 steet an ne tante t 3 13 10-2 - 4 📭 ., n 🚛 🔥 🛝 (10) 1-1 1 A no A • j • 12 • n• 3 • n• 32 (10) 1-14 2 nes ne la te M n s - n - 32 m (10)- 2 - 0 - Zin ne Manse t * n•3 / n• 312 10- 2 - 4 N 10 Mg?? t 10- 1-133 n• Å⊉_m•€ t <u>.</u> 🌆 🖣 n 🖕 10- 1-1 03 ne Ne Manse t

Sports Medicine Sta

n _ n 10- 2 - 00 n _ n _ n _ n 25 _ n _ 5 _ 5 2 n _ n _ n _ n 26 _ n _ 5 _ 5 2 10- 2 - 004 n _ n _ 2 _ 004 n _ n _ 2 _ 004 n _ n _ n _ 2 _ 152 10- 2 - 004 n _ n _ n _ 2 _ 152 n _ 2 _ 152 10- 2 - 004 10- 2 - 004 10- 2 - 004 10- 2 - 004 10- 2 - 004 10- 2 - 004 10- 2 - 004 10- 2 - 00 n - n $2_{\rm m}$ t 12 - 0 10- 1-1 3 10- 1-1 04

Fitness Center Sta

10-2-I ne 12_m t

Sports Performance Sta

n $n_{\rm M}$ $a_{\rm shen}$ 3 332 $a_{\rm m}$ $a_{\rm M}$ 10-1-141 $n_{\rm M}$ 3 $n_{\rm M}$ t $t^{\rm M2}$ 10 $a_{\rm M}$ t $t^{\rm M2}$ 10 $a_{\rm M}$ t $a_{\rm M}$ $a_{\rm M}$ t $a_{\rm M}$ $a_{\rm M}$ a

Equipment Sta

Baseball

• t_{-m} = 53 • 10-2-02• 10-2-02• 10-2-02• 10-2-03• 10-2-03• 10-2-03

Women's Basketball

 $\frac{1}{2} + \frac{1}{2} + \frac{1}$

Men's Basketball

$$\frac{10-1-10}{10-2}$$

Cheerleading

$$10-1-134$$

$$10-1-134$$

$$10-1-134$$

$$10-1-134$$

$$10-1-134$$

$$10-1-134$$

$$10-1-134$$

$$10-1-134$$

$$10-1-134$$

$$10-1-134$$

$$10-1-134$$

$$10-1-134$$

$$10-1-134$$

$$10-1-134$$

$$10-1-134$$

Men's Cross Country

 $\begin{array}{c} \blacksquare & t \\ \blacksquare & \bullet \\ \blacksquare & \bullet \\ \bullet \\ \blacksquare$

Women's Cross Country

$$\begin{array}{c} \blacksquare & t & h \\ \blacksquare & n \\ 10- 1-1 \\ t \\ h \\ 10- 1-1 \\ t \\ h \\ 10- 1-1 \\ t \\ h \\ 10- 1-1 \\ n \\$$

Field Hockey

10- 1-1404

Football

$$\begin{array}{c} \bullet tj = m \\ nn_{3} = n \\$$

Golf

Men's Lacrosse

$$10-2-0$$

 $10-2-0$
 $10-2-0$
 $10-2-0$
 $10-2-0$
 $10-2-0$
 $10-2-0$
 $10-2-0$
 $10-2-0$
 $10-2-0$
 $10-2-0$
 $10-2-0$
 $10-2-0$

Women's Lacrosse

Men's Soccer

Women's Soccer

$$\begin{array}{c} \blacksquare & \texttt{jn} \texttt{tj} \\ \bullet & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ 10-2-3 \\ \texttt{jn} \texttt{tj} & \texttt{n} & \texttt{2}_{\texttt{n}} & \texttt{t} \\ \hline & \texttt{in} & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ 10-2-41 \\ \texttt{ten} & \texttt{n} & \texttt{2}_{\texttt{n}} & \texttt{t} \\ \blacksquare & \texttt{2} & \texttt{2} \\ \hline & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{2} & \texttt{2} \\ \hline & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n} \\ \blacksquare & \texttt{n} \\ \blacksquare & \texttt{n} \\ \blacksquare & \texttt{n} & \texttt{n} & \texttt{n} & \texttt{n$$

Softball

10- 1-1321

$$m = n = 2 m = t$$

 $m = n = 2 m = t$
 $10- 2 - 4$
 $n = 202 n = 2 m = t$
 $n = 202 n = 2 m = t$
 $10- 1-1321$
 $n = n = 2 m = t$
 $10- 1-1$
 $n = n = 2 m = t$
 $10- 1-1321$
 $n = 2 m = 2 m = t$
 $10- 1-1321$
 $n = 2 m = 2 m = t$
 $10- 1-1321$
 $n = 2 m = 2 m = t$
 $10- 1-1321$
 $n = 2 m = 2 m = t$
 $10- 1-1321$
 $n = 2 m = 2 m = t$
 $10- 1-1321$
 $n = 2 m = 2 m = t$
 $10- 2 - 233$
 $n = 2 m = 2 m = t$

Men's Tennis

t M_{M} $M_$

Women's Volleyball

FACULTY AND STAFF EMERITI

(1 3) (2002)

 $\begin{array}{c} \mathbf{M} & \mathbf{J}_{\mathbf{M}} & \mathbf{M} & \mathbf$ $\begin{array}{c} \blacksquare n & 1 & n & 1 & 1 & 2013 \\ \hline n & 2 & n & n & 1 & 2 & 1 & 1 \\ \hline n & 2 & n & n & 1 & 2 & 1 & 1 \\ \hline n & 3 & n & n & 1 & 2 & 1 & 1 \\ \hline n & n & j & 3 & 1 & 1 & 1 \\ \hline n & n & j & 3 & 1 & 1 & 1 \\ \hline n & n & j & 3 & 1 & 1 & 1 \\ \hline n & n & j & 3 & 1 & 1 & 1 \\ \hline n & n & j & 3 & 1 & n & 1 \\ \hline n & n & j & 3 & 1 & n & 1 \\ \hline n & n & j & 3 & 1 & n & 1 \\ \hline \end{array}$ n n n (1) (2004) m 2 n m 2 $(n_{1}, n_{2}, \dots, n_{n}, n_{$ $\begin{array}{c} & p & (1) (2000) \\ & n & p & (1) (2000) \\ & n & p & n & p \\ & & n & p & n & p \\ & & & n & p & p \\ & & & & n & p & p \\ & & & & & n & p & p \\ & & & & & & n & n \\ & & & & & & n & p & p \\ & & & & & & & n & p \\ & & & & & & & n & p \\ & & & & & & & n & p \\ & & & & & & & n & p \\ & & & & & & & n & p \\ & & & & & & & n & p \\ & & & & & & & n & p \\ & & & & & & & n & p \\ & & & & & & & n & p \\ & & & & & & & & n & p \\ & & & & & & & & n & p \\ & & & & & & & & & n & p \\ & & & & & & & & & n & p \\ & & & & & & & & & n & p \\ & & & & & & & & & & n & p \\ \end{array}$

 Image: Second system
 <td . n 12 (1) (1) 27n • • • ■ ▲2 n → (1) (2013)

1 3)(2013) ..., n. 🖓 n 🖣 ۹

ъ ^{ги}

nenska - nn 2010 n - 1 ... 2010 n - 1 ... 1210 nn 12 - 120, 1210 ... 1210 nn 12 - 120, 1210 ... 1210 nn 12 - 120 n 12 (1 1) (2003) n 12 n 12 n . ., 12 n 1 n_Bt, (1 2) (2002) t 2 12 (1 0)(2013) $\begin{array}{c} & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & &$ **2** n **1** (1 4) (1 2)

 $\begin{array}{c} \mathbf{t} & \mathbf{t} & \mathbf{t} \\ \mathbf{t} & \mathbf{t} & \mathbf{t} \\ \mathbf{t} & \mathbf{t} \\ \mathbf{t} & \mathbf{t} \\ \mathbf{t} & \mathbf{t} \\ \mathbf{$ t = t = (1) (2013)• ., Ma Man Aa m , 12-12 (1 2) n 2 20 n 1 12 . ., n 2 n 2 1 I 1) (2003) ۹ n_o i •s te . n (1)(2014) • n • **"**• **"**• **"**• n n In jtyjun. en sten e 22 - e te st2_m e 28 jt¶j⊠.(1)(1) anen a sta)(2001) • • • • • • • • • • • • • • $[n_{13}, n_{23}, n_{13}, n_{$ 12-274

 Image: state • ., Ma• 2 n • 1 nn - Ma n 2.9 $R_{\rm D}r_{\rm H}$ (1) (2003) n 3.0 $n_{\rm H}$ 1.0 $t_{\rm H}$ 2.0 3.0 $t_{\rm S}$ $n_{\rm S}$ $n_{\rm S}$ $t_{\rm S}$ 1.0 $t_{\rm S}$ $t_{\rm S}$ $t_{\rm S}$ 🖻 🖈 🦣 🔩 🔊 (1 3) (2013) $\begin{array}{c} \bullet \mathbf{n} \bullet \mathbf{M} \bullet \mathbf{n} \bullet \mathbf{M} \bullet$ ⊠, j, ., 🦻 (1 0)(200) • 👰 🖻 , n j j • (1) (200) n (1 1) (2011) -s ntest ₩22(1 (3)(1) $\begin{array}{c} \mathbf{n} & \mathbf{r} & \mathbf{n} \\ \mathbf{n} & \mathbf{r} & \mathbf{n} \\ \mathbf{n} & \mathbf{r} & \mathbf{n} \\ \mathbf{n} & \mathbf{r} & \mathbf{r} \\ \mathbf{n} & \mathbf{n} \\ \mathbf{n} \\ \mathbf{n} & \mathbf{n} \\ \mathbf{$

• . . • 12 12• 12 2 33 29 (1) (2001) N N N 29 (1) (2001) N N N 29 (1) (2001) N N N 29 (1) (2001) N N 10 (2001) n ABER 33 N BP (1) (2002) n 1 Drin 3 1 30 ..., N B Drin 1 30 N ..., 1 N B 1 31

n = 2(1 = 1) (2013) n = 2nn - 3 = 32 n = 2nn - 3 = 32 n = 3 = 32n - 1 = 1 n = 3 = 32n - 1 = 1 n = 3 = 32n - 1 = 1 n = 3 = 32n - 1 = 1 n = 3 = 32n - 1 = 1 n = 3 = 32n - 1 = 1 n = 3 = 32n - 1 = 1 n = 3 = 32n - 1 = 1 n = 3 = 32n - 1 = 1 n = 3 = 32n - 1 = 1 n = 3 = 32n - 1 = 1 n = 3 = 32n - 1 = 1 n = 3 = 32n - 1 = 1

2.3.1 Autonomous Faculty Committees

-Missetin Risetian - n 12 , Miss

 $M_{n} = \frac{1}{2} + \frac{1}{2$

n 2 32 m 2 32 m 2 3 2 m N 2 32 m 2 32 m 3 3 m N 2 32 m 2 32 m 3 2 3 m A 2 3 m 2 32 m 2 3 m A 3 3 3 1 2 3 2 m 2 3 m A 3 3 3 1 2 3 2 m A 3 3 1 2 3 2 m A 3 3 1 2 3 2 m A 3 3 1 2 3 2 m A 3 3 1 2 3 2 m A 3 3 1 2 3 2 m A 3 3 1 2 3 2 m A 3 3 m A 3 3 2 m A 3 3 m A 3 3 m A 3 3 m A 3 3 m A 3 3 m A 3 3 m A 3

A ta n sinte si A a ta A ta n sinte si A a ta M n s n sinte si A a ta M n s n sinte si A a ta M n s n sinte si A a ta M n s n sinte si A a ta M n s n sinte si A a ta M t sinte a ta Si A a ta

n i sinnesin i Maisin 2000 -Baisin 13 n Baisin 14 n B

 $\begin{array}{c} 1 & n & jn \\ n & n & t \\ n & n & t \\ n$

21 12 2 non m 10 232 m 2 12 .

, 1 m Alter of 1 m Alter.

ភ∡¹®ាត្រេះ។ពុត្តេះដោះដោះ ដោះ –

2.3. .3 - MARTIN IN to is n \mathbb{R}^{n} () - MARTIN IN to is n \mathbb{R}^{n} () - \mathbb{R}^{n} () - - \mathbb{R}^{n} () - \mathbb{R}^{n} ()

 $\begin{array}{c} 2 & n & jn \\ 2 & n & jn \\ 00 & 10.00 \\$

. 1 m Male as 1 m 1811. . . har 2

- t 1999 - n 120 12 2 9 12 n 9 129 1936 5 2 9 1 1 1 1 12 5 9 - 12 19 12 3 n t 3 9 2 9.

N. 19. A2.

n n state n n st 22 n -3,39 16 the step 10 to the step 10 t ₹t_n 1 .1. A2. nAR. 2.3. .10 , t₃ , t n 🕼 (,) = t_n 1219n • ,t₃ ,• 12 n 12:19.

n n e 29 Man 312 n n h n n e 6 9 m 7 3 1 .1. A2. nAR. 1 .1. A2. nAR. 2.3. .1 n m stall a lan n lan (+), + t 🖣 🕍 👘 2.3. .20 n t 2 h 2.3. .21 • n . 20 n , 🤊 🚾 n 💊 🍊 💭) han han han has a te ha non shake t h.

 $\frac{1}{2} + \frac{1}{2} + \frac{1}$

2.3. .23 \mathbb{R}^{+} \mathbb{R}^{+}

= (1 + i j) = (1 + i j)

Na - ∧n Me 9,9 .39 -- te 9, .10 12 c t t n n 14 14 14 ce in enter lase non enter 🔏 nen tes 🎝 🖓 🖕 💷 🖉 🗛 🗛 - 🎜 🕹 🙀 者 3. 🗏 _Mt • 1 s 🗛 🐅 (1 📲 j.) __ 🦛 🖍 ۹ 📲 n N. ₪ Nt • 1,2021 •• **♦** • • 22 $n_{1} = \frac{1}{10} \frac{$ nentes 1260 -- 2 1 - 1 Na - Na 312 at the 2- € . •• - tet st . A2 s (3 + i) = (3 +nen tes 12.e. -- 2 1 - 2 🎗 🗷 📢 👗 t۹ . t۹ . 🕅 🙀 1 🖕 12 ≠t 9•≠9⊅2₁₄ (99j⊅ (n - 31 31) m M 31 1 2021 _ 🦛 ୬ ۹ 🍂 t i 🖻 🙀 1, 2021 ssin unde las no , n tes se nentes lace -

- 2 4.30 - オノ_ド ミュ.団 - 10 2 回 ・ され、は、団 - 13。12

t
t
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n<

CAMPUS MAPS

Main Street Campus: North

Priscilla Payne Hurd Campus: South

Campus Highlights

. n. 12 n i
. n. 12 n i
. n. 12 n i
. n. 101 i
. n. 1 1 1 1
. n. 1 1
<l

+ 31113, 13 1 1 , 1 01) t 2111 m¹m¹m¹n¹